Template:The Laboratories of Our Lives: Labs, Labs Everywhere!/Laboratories: A historical perspective/Modern laboratories and their importance

From LIMSWiki
Jump to navigationJump to search

1.4 Modern laboratories and their importance

The twentieth century saw laboratories of all kinds grow, develop, and mature, though not without their share of difficulties. In the 1920s, for example, some U.S. physicians, specialists, and dentists complained heavily of the lack of quality standards, regulations, and ethics inherent in for-profit clinical, chemical, and radiological laboratories.[1][2][3][4] Other changes took place there too, particularly after World War II, when a fundamental transition took place, shifting many perceptions of what was the "Western" world from Europe to the U.S. This post-war shift also saw focus from the philosophical and theoretical laboratorian to the experimental and practical lab researcher, according to Pestre[5]:

Fundamental theorists were still essential, and they were highly respected, but they no longer had that mythical status which was accorded to the founders of quantum mechanics. They were also in minority with those (the "phenomenologists") whose job it was to deal with the mass of experimental results produced in the laboratories. Seeking theories which were locally coherent and which could be immediately useful and produce numbers, their role was to display a practical efficiency. They thus participated in the development of a science which was increasingly integrated into its economic and political environment, and contributed to the multiplications of the sites where knowledge was produced. These were now the universities and the technical institutes, the national laboratories and the industrial laboratories (Siemens or General Electric), but also the myriad of small firms established as a result of government contracts.

This transition carried on to other parts of the world, where the Industrial Revolution gave way to the Scientific-Technical Revolution of the '50s and '60s, and that to the Information Age in roughly the late '70s to early '80s. Through all of these time periods to present day, we've seen the amount of information moving in and out of laboratories multiply drastically as well, particularly with the advent of data-producing analytical devices and data management tools, including genomics equipment such as DNA sequencers.[6]

Most importantly, however, is the transition to a time when the ubiquity of the laboratory in our way of life becomes apparent. The previous quote from Pestre is important to note when thinking about this concept; today we see labs in all the places he mentioned as well as in other unexpected locations and fields of research, including the expanding cannabis industry.[7] Like the idea of the ubiquitous transistor and how easy it is to take for granted[8], the laboratory is also found everywhere, sometimes obvious (e.g., when you need to have blood drawn for a medical test) and other times not at all obvious (e.g., the U.S. Navy's Arctic Submarine Laboratory[9]).

And these labs are important, positively impacting industry, government, and the public. Take for example the United States' Argonne National Laboratory in Illinois, which claimed in 2020 to employ more than 3,400 people and have approximately $144 million total economic impact for the state.[10] Looking to the past, we find that Bell Telephone Laboratories at its peak employed some 1,200 PhDs and was responsible for the creation of vital technologies such as solid state components, wireless telephony technology, the C programming language, and the Unix operating system (thanks to Bell researchers like Ken Thompson and Dennis Ritchie).[11] In fact, laboratories are often at the heart of a company's R&D efforts towards bringing people new products. Vehicle[12] and makeup[13] users alike are affected by manufacturing laboratories that research, design, test, and quality control their products. Clinical labs help keep current and future generations healthy, and forensic labs help bring justice to the wronged. Of course, calibration laboratories are vital to ensuring the precise measurement and production values of any equipment those other laboratories strongly depend on.

In a quest to further put the prevalence of laboratories into perspective, we use examples similar to above to describe 20 common industries that find laboratories vital to their activities. But before we can do that, we need to first build a framework for better visualizing and understanding how labs intersect our lives, which we do in the next section.

Further reading

  • Klein, U. (2008). "The Laboratory Challenge: Some Revisions of the Standard View of Early Modern Experimentation". Isis 99 (4): 769-782. doi:10.1086/595771. 
  1. Taylor, Holman (ed.) (October 1920). "Advertising Medical Laboratories (Encore)". Texas State Journal of Medicine 16 (6): 229–230. https://books.google.com/books?id=LbEDAAAAYAAJ&pg=PA229. 
  2. Sondern, Frederic E. (ed.) (October 1921). "Commercial Laboratories". New York State Journal of Medicine 21 (10): 390. https://books.google.com/books?id=j7hYAAAAYAAJ&pg=PA390. 
  3. White, Courtland Y. (August 1922). "The Role of the Nonmedical Graduate in the Medical Laboratory". Kentucky Medical Journal 25 (11): 755–760. https://books.google.com/books?id=OTMTAAAAYAAJ&pg=PA755. 
  4. Sundelof, E. M. (30 March 1922). "The Business Side of X-ray Diagnosis and Treatment". The Boston Medical and Surgical Journal 186 (13): 442–444. https://books.google.com/books?id=E741AQAAMAAJ&pg=PA442. 
  5. Pestre, D. (2013). "Chapter 4: Science, Political Power and the State". In Krige, J.; Pestre, D.. Science in the Twentieth Century. Routledge. pp. 61–76. ISBN 9057021722. https://books.google.com/books?id=ZYUfAgAAQBAJ&pg=PA71. 
  6. Pollack, A. (30 November 2011). "DNA Sequencing Caught in Deluge of Data". The New York Times. The New York Times Company. https://www.nytimes.com/2011/12/01/business/dna-sequencing-caught-in-deluge-of-data.html. Retrieved 28 June 2022. 
  7. Douglas, S.E. (March 2020). "Past, Present, and Future of Cannabis Laboratory Testing and Regulation in the United States, Third Edition". LIMSwiki.org. https://www.limswiki.org/index.php/LII:Past,_Present,_and_Future_of_Cannabis_Laboratory_Testing_and_Regulation_in_the_United_States. Retrieved 28 June 2022. 
  8. Gaudin, S. (12 December 2007). "The transistor: The most important invention of the 20th century?". Computerworld. IDG Communication, Inc. https://www.computerworld.com/article/2538123/the-transistor--the-most-important-invention-of-the-20th-century-.html. Retrieved 28 June 2022. 
  9. "Arctic Submarine Lab". United States Navy. https://www.sublant.usff.navy.mil/ASL/. Retrieved 28 June 2022. 
  10. "Argonne Impacts State by State: Illinois". Argonne National Laboratory. UChicago Argonne, LLC. https://www.anl.gov/argonne-impacts/illinois. Retrieved 28 June 2022. 
  11. Gertner, J. (2013). The Idea Factory: Bell Labs and the Great Age of American Innovation. Penguin. pp. 422. ISBN 9780143122791. https://books.google.com/books?id=OkECDAAAQBAJ. 
  12. "Materials Technology". Volvo Group. AB Volvo. Archived from the original on 29 June 2017. https://web.archive.org/web/20170629222307/http://www.volvogroup.com/en-en/about-us/r-d-and-innovations/materials-technology.html. Retrieved 28 June 2022. 
  13. "L’Oréal USA Research And Innovation". L’Oréal Group. Archived from the original on 21 October 2018. https://web.archive.org/web/20181021232022/http://www.lorealusa.com/group/discover-l'or%C3%A9al-usa/l%E2%80%99or%C3%A9al-usa-research-and-innovation. Retrieved 28 June 2022.