Template:The Laboratories of Our Lives: Labs, Labs Everywhere!/Labs by industry: Part 1/Automotive, aerospace, and marine

From LIMSWiki
Jump to navigationJump to search

3.2 Automotive, aerospace, and marine

Delphi Automotive (6944417073).jpg

Laboratories in the automotive, aerospace, and maritime travel industry are focused on the design, development, and testing of components, materials, fluids, etc. that make up vehicles that operate on land, on sea, in air, and in outer space. These labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to):

  • analysis and assessment of chemicals and petrochemicals[1]
  • analysis and assessment of materials[2][3]
  • analysis and assessment of safety[2][3]
  • tracking and analysis of structural integrity[4]
  • design and analysis of lighting[5]
  • design and analysis of chassis[6]
  • design and analysis of fuel cells[7]
  • failure analysis[8]

But how do automotive, aerospace, and marine laboratories intersect the average person's life on a daily basis?

While much scientific effort has gone into the development of modern vehicles—a significant portion of it in some sort of laboratory—from the ergonomic shift knob and regenerative braking system to the quantum accelerometer[9] and solid rocket booster, the laboratory testing that goes into designing safer transportation solutions and control systems is the easiest for the layperson to relate to. From Volvo and Nils Bohlin's contribution of the three-point seat belt[10] to the continuing improvement of automotive and pedestrian impact safety standards[11], traditional and non-traditional laboratories alike are responsible for advances in keeping drivers, passengers, and pedestrians safer. Without these laboratories in place—and without the related efforts of pioneering automotive engineers developing and propagating tested standards in the 1910s[12]—the safety of vehicles arguably wouldn't be anything like what it is today. Secondarily, vehicle reliability and longevity would also suffer.

3.2.1 Client types

Private - Private laboratories in this industry are usually either associated directly with a vehicle manufacturer (e.g., Ford Motor Company, Boeing Company, Gulf Craft, and SpaceX) or act as a third-party contract laboratory for manufacturers and designers who are unable or unwilling to invest in their own private laboratory. Aside from analytical services, these labs often include consulting services on design management and analysis as well as team and project management.

Examples include:

Government - Government-run transportation-related laboratories conduct specialized topical research, provide analytical services, and oversee federal, state, and local programs in the industry. From aircraft fatigue research and emissions testing to transportation system modelling, these public or public-private labs may act as major research hubs or checkpoints of regulated testing.

Examples include:

Academic - Automotive, aerospace, and maritime transportation laboratories associated with higher education institutions act as teaching locations for new students, as well as fundamental and applied research locations for more advanced students. That academic research may be funded by industry sources, by a government, or by a non-profit or foundation, and some academic laboratories may act as a public-private entity when a non-profit or private entity partners with the higher education institution.

Examples include:

3.2.2 Functions

What are the most common functions? analytical, QA/QC, and research/design

What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled? braking, combustion, durability, emissions, fluid dynamics, lubricants, materials and components, paints and coatings, power conversion and control, propulsion and power generation, safety, structural mechanics

What sciences are being applied in these labs? biomechanics, chemical, electrical engineering, electronic engineering, environmental, ergonomics, materials science, mathematics, mechanical engineering, physics, safety engineering, software engineering

What are some examples of test types and equipment?

Common test types include:

Accelerated stress testing, Accelerated weathering, Acceleration, Acoustical, Adhesion, Aging, Altitude, Ash, Case depth, Characterization, Chemical and materials compatibility, Cleanliness, Climatics, Combustion, Comparative Tracking Index, Compliance/Conformance, Compression, Conductivity, Contact mechanics, Continuous salt spray, Corrosion, Damage tolerance, Degradation, Design review and evaluation, Dielectric withstand, Dimensional, Discoloration, Dynamics, Efficiency, Electromagnetic compatibility, Electromagnetic interference, Electrostatic discharge, Emissions, Endurance, Environmental stress-cracking resistance, Ergonomics, Etching, Failure, Fatigue, Feasibility, Flammability, Flash point, Fluid dynamics, Friction, Functional testing, Hazard analysis, Heat resistance, Hydraulic, Immersion, Impact, Inclusion, Inflatability, Ingress, Iterative, Lightning, Lubricity, Macroetch, Mass, Mechanical, Mechanical durability, Oxidation reduction potential, Passivation, Performance, Permeability, pH, Photometric, Plating and coating evaluations, Proficiency, Prohesion, Qualification, Quality control, Reliability, Resistance - capacitance - inductance, Safety, Shear, Shock, Stress corrosion cracking, Surface topography, Tensile, Thermal, Torque, Ultraviolet, Usability, Velocity and flow, Vibration, Visibility, Voltage, Weathering

Industry-related lab equipment may include:

battery load tester, carbon sulfur analyzer, circuit tester, calorimeter, compression tester, demonstration and simulation equipment, digital multimeter, gas analyzer, gyroscope, hardness tester, heat treatment furnace, salt spray chamber, temperature and humidity chamber, tension tester, thermal shock chamber

What else, if anything, is unique about the labs in the automotive, aerospace, and maritime travel industry?

A September 2010 Brookings report stated that "innovation activity undertaken in the private sector of the auto industry extends far beyond the automaker itself, as nearly three-fourths of the value of a vehicle is added by companies other than the automaker."[13] Though the report doesn't directly mention who makes up those companies, presumably industry-focused R&D, QA, and compliance testing laboratories make up at least a small portion of them. As for intersections with other industries, the petrochemical, environmental, and energy industries are closely linked, providing insight and advances in combustion, emissions control, and alternative fuel sources to automobile, airplane, boat, and space vehicle designers and manufacturers.

3.2.3 Informatics in the automotive, aerospace, and marine industry

As the automobile is being transformed by technologies, applications and services grounded in advances in everything from sensors to artificial intelligence to big data analysis; the ecosystem is witnessing a steady influx of new players and the continued evolution of the roles played by key stakeholders and the balance of power among them. Of particular interest is the evolving relationship between automakers and software providers. - Mike Woodward, U.K. Automotive Leader, Deloitte[14]

Woodward's statement isn't that unusual in itself; representative of multiple industries have made similar remarks. What is more interesting is his mention of the role software providers specifically are playing in industries like the automotive, aerospace, and marine industry. From data recovery and distribution to data sharing, whether it's in the R&D lab or on the factory floor, informatics software is increasingly playing a role in making safer products, improving operational efficiency, and better targeting sales and marketing. Laboratory information management systems (LIMS) are being tailored to the industry to assist with statistical process control (SPC) and capability studies using data directly from the factory floor.[15] LIMS is also helping in aerospace development, particularly with managing specifications and materials analysis in the lab.[16] And with the greater focus on informatics in the industry, new journals like the International Journal of Aerospace System Science and Engineering[17] are appearing to further informatics applications in automotive, aerospace, and marine labs.

3.2.4 LIMSwiki resources and further reading

LIMSwiki resources

Further reading

  1. Phlegm, H.K. (2009). The Role of the Chemist in Automotive Design. CRC Press. pp. 216. ISBN 9781420071894. https://books.google.com/books?id=tRzfAwbzbNMC&printsec=frontcover. 
  2. 2.0 2.1 Elmarakbi, A., ed. (2013). Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness. John Wiley & Sons. pp. 472. ISBN 9781118535264. https://books.google.com/books?id=wfxQAQAAQBAJ&printsec=frontcover. 
  3. 3.0 3.1 Davies, G. (2012). Materials for Automobile Bodies. Elsevier. pp. 416. ISBN 9780080969800. https://books.google.com/books?id=_fZsIeCavO8C&printsec=frontcover. 
  4. Staszewski, W.; Boller, C.; Tomlinson, G.R., ed. (2004). Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing. John Wiley & Sons. pp. 288. ISBN 9780470092835. https://books.google.com/books?id=nzSPVBZ_Yg0C&printsec=frontcover. 
  5. Wördenweber, B.; Wallaschek, J.; Boyce, P.; Hoffman, D.D. (2007). Automotive Lighting and Human Vision. Springer Science & Business Media. pp. 410. ISBN 9783540366973. https://books.google.com/books?id=yatUXs8QQAMC&printsec=frontcover. 
  6. Reimpell, J.; Stoll, H.; Betzler, J., ed. (2001). The Automotive Chassis: Engineering Principles. Butterworth-Heinemann. pp. 456. ISBN 9780080527734. https://books.google.com/books?id=fuXf3wmahM8C&printsec=frontcover. 
  7. Kocha, S.S. (2012). "Chapter 15: Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications". In Kreuer, K.-D.. Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology. Springer Science & Business Media. pp. 473–518. ISBN 9781461457855. https://books.google.com/books?id=LE99dRxwtVcC&pg=PA473. 
  8. Reddy, A.V. (2004). Investigation of Aeronautical and Engineering Component Failures. CRC Press. pp. 368. ISBN 9780203492093. https://books.google.com/books?id=WkXRBQAAQBAJ&printsec=frontcover. 
  9. Marks, P. (14 May 2014). "Quantum positioning system steps in when GPS fails". New Scientist. New Scientist Ltd. https://www.newscientist.com/article/mg22229694-000-quantum-positioning-system-steps-in-when-gps-fails/. Retrieved 28 June 2022. 
  10. "Three-point seatbelt inventor Nils Bohlin born". History.com. A+E Networks. 27 January 2010. https://www.history.com/this-day-in-history/three-point-seatbelt-inventor-nils-bohlin-born. Retrieved 28 June 2022. 
  11. Atiyeh, C. (9 December 2015). "NHTSA Overhauling Crash Tests for 2019 Model Year Cars". Car and Driver. Hearst Communications, Inc. https://www.caranddriver.com/news/a15350598/nhtsa-overhauling-crash-tests-for-2019-model-year-cars/. Retrieved 28 June 2022. 
  12. Thompson, G.V. (1954). "Intercompany Technical Standardization in the Early American Automobile Industry". The Journal of Economic History 14 (1): 1–20. https://www.jstor.org/stable/2115223. 
  13. Klier, T.; Sands, C. (September 2010). "The Federal Role in Supporting Auto Sector Innovation" (PDF). Metropolitan Policy Program. Brookings Institution. https://www.brookings.edu/wp-content/uploads/2016/07/0927_great_lakes_auto.pdf. Retrieved 28 June 2022. 
  14. "Big data and analytics in the automotive industry: Automotive analytics thought piece" (PDF). Deloitte LLP. 2015. https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/manufacturing/deloitte-uk-automotive-analytics.pdf. Retrieved 28 June 2022. 
  15. "SPC & Capability studies with a single mouse click". Asystance B.V. Archived from the original on 15 September 2017. https://web.archive.org/web/20170915011017/http://www.alis.nl/en/alis-lims-for-automotive-industry/. Retrieved 28 June 2022. 
  16. "Aerospace & Defense". Wavefront Software, Inc. https://www.wavefrontsoftware.com/industries/aerospace.asp. Retrieved 28 June 2022. 
  17. "International Journal of Aerospace System Science and Engineering". Inderscience Enterprises Ltd. https://www.inderscience.com/jhome.php?jcode=ijasse. Retrieved 28 June 2022.