Template:The Laboratories of Our Lives: Labs, Labs Everywhere!/Labs by industry: Part 2/Food and beverage

From LIMSWiki
Jump to navigationJump to search

4.5 Food and beverage

Laboratório de Tecnologia de Alimentos.jpg

Food and beverage laboratories are responsible for developing, protecting, and supporting the food, beverages, and nutritional supplements humans and animals consume. From creating new flavor enhancers for food to ensuring the quality and safe consumption of a wine, these labs play a vital role in most parts of the world where processed food and agricultural products are produced. These labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to)[1]:

  • reverse engineering
  • claims testing
  • contaminate testing
  • batch variation testing
  • extractable and leachable testing
  • allergen testing
  • shelf life testing
  • non-routine quality testing
  • packaging testing

But how do food and beverage laboratories intersect the average person's life on a daily basis?

Have you ever enjoyed a candy bar, soda, or snack cake? A laboratory and food scientists were behind its production. Don't care much for processed foods? A laboratory is still involved in the quality and safety testing of raw fruits and vegetables, milk, and nuts. And when food supplies become contaminated, government testing labs are often in the thick of determining the source of the contamination as quickly as possible before more people become ill. Whether it's the unique flavor profile of a potato chip you love or the fact you can reliably acquire safe foods, remember that a laboratory is often behind it.

4.5.1 Client types

Private - Whether manufacturers seek help with a formulation problem or a government subcontracting contamination analysis, private food and beverage labs are there. These labs may appear within a major food corporation or act as third-party contact labs for work as needed.

Examples include:

Government - The government-affiliated labs of the food and beverage industry typically act as protectors of the local, regional, or national food supply. Some may be responsible for developing and enforcing regulations as well.

Examples include:

Academic - Academic food and beverage labs are usually teaching labs, often associated with a university's agriculture department.

Examples include:

4.5.2 Functions

What are the most common functions? analytical, QA/QC, research/design, and teaching

What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled? candy, dairy, fruits, grains, meats, nuts, oils, proteins, soft drinks, starches, sugars, vegetables, vitamins

What sciences are being applied in these labs? biochemistry, chemical engineering, chemistry, fermentation science, microbiology, molecular gastronomy, nutrition and food science

What are some examples of test types, terminology, and equipment?

Common test types include:

Absorption, Active ingredient, Alcohol level, Allergy, Altitude, Amino acid analysis, Ash, Bioavailability, Bioburden, Biodegradation, Biomolecular, Boiling - freezing - melting point, Comparison, Compliance/Conformance, Contamination, Density, Detection, Efficacy, Expiration dating, Extractables and leachables, Flavor, Fluid dynamics, Fluorescence, Fragrance, Genotoxicity, GMO detection, HACCP, Hazard analysis, Identification, Ingredient, Iodine value, Isotope analysis, Labeling, Moisture, Mold - fungal - mycotoxin, Mutagenicity, Nutritional, Oxidation reduction potential, Oxidation stability, Pathogen, PDCAAS, Permeability, Peroxide value, pH, Plant metabolism, Polarimetry, Preservative challenge, Proficiency, Purity, Quality control, Radioactivity, Radiochemical, Refractive index, Safety, Sanitation, Saponification value, Sensory, Shelf life, Smoke point, Sulfide, Thermal, Total viable count, Turbidity, Viscosity, Water activity

Industry-related lab equipment may include:

alcohol analyzer, balance, biosafety cabinet, centrifuge, chiller, chromatograph, colorimeter, ELISA equipment, evaporator, fat analyzer, freezer, fume hood, gravimetric diluter, hot/forced air oven, incubator, Kjeldahl digestion apparatus, laminar airflow workstation, media sterilizer, microscope, moisture analyzer, muffle furnace, Petri dish, photometric analyzer, protein analyzer, refractometer, spectrometer, titrator

What else, if anything, is unique about the labs in the food and beverage industry?

As previously mentioned in the agriculture section, the food and beverage industry has strong ties to the agriculture industry, though broadly speaking the food and beverage industry is typically dealing with the end products of agriculture.

While most industries see global standards coalesce around their industry, this holds especially true for food and beverage laboratories. Given the vital nature of a clean and safe food supply, regulation and global standardization remains a strong goal for the industry.[2] These regulations evolve over time as well, as can be seen with the evolution of the U.S.' Laboratory Accreditation for Analyses of Foods (LAAF) rule, which designates some food testing be specifically performed by specially accredited laboratories.[3]

4.5.3 Informatics in the food and beverage industry

When asked why a LIMS is important to the food and beverage industry in 2014, Core Informatics co-founder Anthony Uzzo noted the following[4]:

The food and beverage industry faces increasing regulatory scrutiny, pressures to control costs, and the challenge of maintaining quality throughout a global supply chain. A LIMS solution needs to be a solution to aid companies in the delivery and discovery of products, while complying with industry and government regulations. The LIMS need to identify hazards, determine and monitor critical control points, and establish corrective actions and verification procedures to ensure that standards are met and the system is functioning properly.

That statement largely sums up why the food and beverage industry is using informatics products in their workflow, even more so in 2022. From QC to regulatory compliance, informatics systems allow industry labs to handle huge amounts of data to not only meet those goals but also make new insights and optimize workflows. Some businesses are also integrating laboratory informatics applications with other software systems such as shipping systems, hazard analysis tools, and quality management systems in order to further integrate data silos and improve product quality and service.[5]

4.5.4 LIMSwiki resources and further reading

LIMSwiki resources

Further reading