Difference between revisions of "Journal:Analysis of phenolic compounds in commercial Cannabis sativa L. inflorescences using UHPLC-Q-Orbitrap HRMS"

From LIMSWiki
Jump to navigationJump to search
(Created stub. Saving and adding more.)
 
 
(13 intermediate revisions by the same user not shown)
Line 7: Line 7:
|title_full  = Analysis of phenolic compounds in commercial ''Cannabis sativa'' L. inflorescences using UHPLC-Q-Orbitrap HRMS
|title_full  = Analysis of phenolic compounds in commercial ''Cannabis sativa'' L. inflorescences using UHPLC-Q-Orbitrap HRMS
|journal      = ''Molecules''
|journal      = ''Molecules''
|authors      = Izzo, Luana; Castaldo, Luigi; Narváez, Alfonso; Graziani, Giulia;<br />Gaspari, Anna; Rodríguez-Carrasco, Yelko; Ritieni, Alberto
|authors      = Izzo, Luana; Castaldo, Luigi; Narváez, Alfonso; Graziani, Giulia; Gaspari, Anna; Rodríguez-Carrasco, Yelko; Ritieni, Alberto
|affiliations = University of Naples "Federico II," University of Valencia
|affiliations = University of Naples "Federico II," University of Valencia
|contact      = Email: luana dot izzo at unina dot it
|contact      = Email: luana dot izzo at unina dot it
Line 19: Line 19:
|website      = [https://www.mdpi.com/1420-3049/25/3/631/htm https://www.mdpi.com/1420-3049/25/3/631/htm]
|website      = [https://www.mdpi.com/1420-3049/25/3/631/htm https://www.mdpi.com/1420-3049/25/3/631/htm]
|download    = [https://www.mdpi.com/1420-3049/25/3/631/pdf https://www.mdpi.com/1420-3049/25/3/631/pdf] (PDF)
|download    = [https://www.mdpi.com/1420-3049/25/3/631/pdf https://www.mdpi.com/1420-3049/25/3/631/pdf] (PDF)
}}
{{ombox
| type      = notice
| image    = [[Image:Emblem-important-yellow.svg|40px]]
| style    = width: 500px;
| text      = This article should be considered a work in progress and incomplete. Consider this article incomplete until this notice is removed.
}}
}}


==Abstract==
==Abstract==
Industrial [[Wikipedia:Hemp|hemp]] (''[[Wikipedia:Cannabis sativa|Cannabis sativa]]'' L., family [[Wikipedia:Cannabaceae|Cannabaceae]]) contains a vast number of relevant bioactive organic compounds, namely [[Wikipedia:Polyphenol|polyphenols]], including [[Wikipedia:Flavonoid|flavonoids]], phenolic acids, phenol amides, and lignanamides, which are well known for their therapeutic properties. Nowadays, many polyphenol-containing products made from herbal extracts are marketed, claiming to have health-promoting effects. In this context, industrial hemp [[Wikipedia:Inflorescence|inflorescences]] may represent an innovative source of bioactive compounds to be used in nutraceutical formulations. The aim of this work was to provide a comprehensive analysis of the polyphenolic fraction contained in polar extracts of four different commercial cultivars—Kompolti, Tiborszallasi, Antal, and Selected Carmagnola (CS)—of hemp inflorescence through [[Wikipedia:Spectrophotometry|spectrophotometric]] (for total polyphenol content [TPC] and [[Wikipedia:DPPH|DPPH]] assays) and [[Wikipedia:Spectrometry|spectrometry]] measurement (using [[High-performance liquid chromatography|ultra high-performance liquid chromatography]]–[[quadrupole]]–[[orbitrap]] [[Mass spectrometry|high-resolution mass spectrometry]] or UHPLC-Q-Orbitrap HRMS). Results highlighted a high content of [[Wikipedia:Cannflavin|cannflavin]] A and B in inflorescence samples, which appear to be cannabis-specific, with a mean value of 61.8 and 84.5 mg/kg, meaning a ten-to-hundred times increase compared to other parts of the plant. Among flavonols, quercetin-3-glucoside reached up to 285.9 mg/kg in the CS cultivar. Catechin and epicatechin were the most representative flavanols, with a mean concentration of 53.3 and 66.2 mg/kg, respectively, for all cultivars. TPC in inflorescence samples was quantified in the range of 10.51 to 52.58 mg GAE/g, and free radical-scavenging included in the range from 27.5 to 77.6 mmol trolox/kg. Therefore, ''C. sativa'' inflorescence could be considered as a potential novel source of polyphenols intended for nutraceutical formulations.
Industrial [[Wikipedia:Hemp|hemp]] (''[[Wikipedia:Cannabis sativa|Cannabis sativa]]'' L., family [[Wikipedia:Cannabaceae|Cannabaceae]]) contains a vast number of relevant bioactive organic compounds, namely [[Wikipedia:Polyphenol|polyphenols]], including [[Wikipedia:Flavonoid|flavonoids]], phenolic acids, phenol amides, and lignanamides, which are well known for their therapeutic properties. Nowadays, many polyphenol-containing products made from herbal extracts are marketed, claiming to have health-promoting effects. In this context, industrial hemp [[Wikipedia:Inflorescence|inflorescences]] may represent an innovative source of bioactive compounds to be used in nutraceutical formulations.  
 
The aim of this work was to provide a comprehensive analysis of the polyphenolic fraction contained in polar extracts of four different commercial cultivars—Kompolti, Tiborszallasi, Antal, and Selected Carmagnola (CS)—of hemp inflorescence through [[Wikipedia:Spectrophotometry|spectrophotometric]] (total phenolic content [TPC] and [[Wikipedia:DPPH|DPPH]] assays) and spectrometry measurement (using [[High-performance liquid chromatography|ultra high-performance liquid chromatography]]–[[quadrupole]]–[[orbitrap]] [[Mass spectrometry|high-resolution mass spectrometry]] or UHPLC-Q-Orbitrap HRMS).  
 
Results highlighted a high content of [[Wikipedia:Cannflavin|cannflavin]] A and B in inflorescence samples, which appear to be cannabis-specific, with a mean value of 61.8 and 84.5 mg/kg, meaning a ten-to-hundred times increase compared to other parts of the plant. Among [[Wikipedia:Flavonols|flavonols]], quercetin-3-glucoside reached up to 285.9 mg/kg in the CS cultivar. Catechin and epicatechin were the most representative [[Wikipedia:Flavan-3-ol|flavan-3-ols]], with a mean concentration of 53.3 and 66.2 mg/kg, respectively, for all cultivars. TPC in inflorescence samples was quantified in the range of 10.51 to 52.58 mg GAE/g, and free radical-scavenging included in the range from 27.5 to 77.6 mmol trolox/kg. As such, ''C. sativa'' inflorescence could be considered as a potential novel source of polyphenols intended for nutraceutical formulations.


'''Keywords''': ''Cannabis sativa'' L., polyphenols, UHPLC-Q-Orbitrap HRMS
'''Keywords''': ''Cannabis sativa'' L., polyphenols, UHPLC-Q-Orbitrap HRMS


==Introduction==
''[[Wikipedia:Cannabis sativa|Cannabis sativa]]'' is an annual herbaceous plant of the [[Wikipedia:Cannabaceae|Cannabaceae]] family, native to Central Asia but with a wide distribution over different geographical areas, facilitated by climate adaptation. This plant has long been cultivated due to its large variety of applications, from textile uses to food and feed.<ref name="AndreCanna16">{{cite journal |title=''Cannabis sativa'': The Plant of the Thousand and One Molecules |journal=Frontiers in Plant Science |author=Andre, C.M.; Hausman, J.F.; Guerriero, G. |volume=7 |at=19 |year=2016 |doi=10.3389/fpls.2016.00019 |pmid=26870049 |pmc=PMC4740396}}</ref>
Industrial [[Wikipedia:Hemp|hemp]], characterized by a low content of [[Wikipedia:Psychoactive drug|psychoactive]] [[Wikipedia:Cannabinoid|cannabinoids]], contains bioactive organic compounds that are known to have a wide range of important biological properties.<ref name="CushnieAntimoc05">{{cite journal |title=Antimicrobial activity of flavonoids |journal=International Journal of Antimicrobial Agents |author=Cushnie, T.P.T.; Lamb, A.J. |volume=26 |issue=5 |pages=343–56 |year=2005 |doi=10.1016/j.ijantimicag.2005.09.002 |pmid=16323269 |pmc=PMC7127073}}</ref> [[Wikipedia:Polyphenol|Polyphenols]] represent one of the most relevant compounds found in ''C. sativa'', including the likes of prenylated [[Wikipedia:Flavonoid|flavonoids]], phenol amides, and lignanamides, which are specific metabolites of this plant. They are known to play multifunctional roles in the defense mechanisms of the plant, especially through their activity as antioxidants, preventing the generation of [[Wikipedia:Reactive oxygen species|reactive oxygen species]] (ROS).<ref name="MkpenieEffect12">{{cite journal |title=Effect of extraction conditions on total polyphenol contents, antioxidant and antimicrobial activities of ''Cannabis sativa'' L. |journal=Electronic Journal of Environmental, Agricultural and Food Chemistry |author=Mkpenie, V.N.; Essien, E.E.; Udoh, I.I. |volume=11 |issue=4 |pages=300–307 |year=2012 |url=https://www.researchgate.net/publication/260824507_Effect_of_extraction_conditions_on_total_polyphenol_contents_antioxidant_and_antimicrobial_activities_of_Cannabis_sativa_L}}</ref><ref name="SianoCompar18">{{cite journal |title=Comparative Study of Chemical, Biochemical Characteristic and ATR-FTIR Analysis of Seeds, Oil and Flour of the Edible Fedora Cultivar Hemp (''Cannabis sativa'' L.) |journal=Molecules |author=Siano, F.; Moccia, S.; Picariello, G. et al. |volume=24 |issue=1 |at=83 |year=2019 |doi=10.3390/molecules24010083}}</ref><ref name="PollastroCanna18">{{cite journal |title=Cannabis Phenolics and their Bioactivities |journal=Current Medicinal Chemistry |author=Pollastro, F.; Minassi, A.; Fresu, L.G. |volume=25 |issue=10 |pages=1160–1185 |year=2019 |doi=10.2174/0929867324666170810164636}}</ref><ref name="MandalPhenol10">{{cite journal |title=Phenolic acids act as signaling molecules in plant-microbe symbioses |journal=Plant Signaling & Behavior |author=Mandal, S.M.; Chakraporty, D.; Dey, S. |volume=5 |issue=4 |pages=359–68 |year=2010 |doi=10.4161/psb.5.4.10871}}</ref> In humans, polyphenols can display health-promoting effects based on the modulation of several enzymes, such us lipoxygenase and the superfamily of cytochrome P450, showing cardio- or chemoprotective activity, among others.<ref name="PollastroCanna18" /><ref name="CastaldoRedWine19">{{cite journal |title=Red Wine Consumption and Cardiovascular Health |journal=Molecules |author=Castaldo, L.; Narváez, A.; Izzo, L. et al. |volume=24 |issue=19 |at=3626 |year=2019 |doi=10.3390/molecules24193626 |pmid=31597344 |pmc=PMC6804046}}</ref>
For this reason, polyphenol-containing products have been increasingly marketed as food supplements and nutraceuticals, and, currently, a great variety of supplements claiming to enhance specific physiological functions are commercially available. Nutraceuticals consist of naturally-occurring active substances, which are concentrated and administered in the suitable pharmaceutical form to properly develop its pharmacological effect. Furthermore, when compared to traditional drugs, nutraceuticals appear to be generally safer, with higher bioavailability and fewer side effects.<ref name="SantiniNutra17">{{cite journal |title=Nutraceuticals: A paradigm of proactive medicine |journal=European Journal of Pharmaceutical Sciences |author=Santini, A.; Tenore, G.C.; Novellino, E. |volume=96 |pages=53–61 |year=2017 |doi=10.1016/j.ejps.2016.09.003 |pmid=27613382}}</ref> The manufacturing of nutraceuticals requires isolated ingredients that have to be extracted and purified for latter uses. Since certain polyphenols naturally occur inside insoluble structures, such as vacuoles, obtention of pure compounds can become a complex process.<ref name="KellyStrat19">{{cite journal |title=Strategies for enrichment and purification of polyphenols from fruit-based materials |journal=Trends in Food Science & Technology |author=Kelly, N.P.; Kelly, A.L.; O'Mahony, J.A. |volume=83 |pages=248–58 |year=2019 |doi=10.1016/j.tifs.2018.11.010}}</ref> In addition, several studies reported a decrease in the bioavailability and bioaccessibility of pure polyphenols in comparison with the administration of plant extracts rich in polyphenols, which may be due to the existence of other active compounds which can establish synergistic functions with them.<ref name="LinInVitro19">{{cite journal |title=In vitro bioaccessibility and bioavailability of quercetin from the quercetin-fortified bread products with reduced glycemic potential |journal=Food Chemistry |author=Lin, J.; Teo, L.M.; Leong, L.P. et al. |volume=286 |pages=629–35 |year=2016 |doi=10.1016/j.foodchem.2019.01.199 |pmid=30827656}}</ref><ref name="Gómez-JuaristiBioava18">{{cite journal |title=Bioavailability of hydroxycinnamates in an instant green/roasted coffee blend in humans. Identification of novel colonic metabolites |journal=Food & Function |author=Gómez-Juaristi, M.; Martínez-López, S.; Sarria, B. et al. |volume=9 |issue=1 |pages=331-343 |year=2018 |doi=10.1039/c7fo01553d |pmid=29177345}}</ref><ref name="ShuklaAComb17">{{cite journal |title=A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin |journal=Drug Development and Industrial Pharmacy |author=Shukla, M.; Jaiswal, S.; Sharma, A. et al. |volume=43 |issue=5 |pages=847–61 |year=2017 |doi=10.1080/03639045.2016.1239732 |pmid=27648633}}</ref> Because of this, food supplements could be a valuable resource to consume polyphenol-containing products. They consist of extracts from herbals and botanicals than can be delivered as the same pharmaceutical forms as nutraceuticals. Some of the most prevalent plants used as a source of polyphenols are tea, coffee, apple, basil, and turmeric, among others, each one intended for specific polyphenols.<ref name="AbbasNatural17">{{cite journal |title=Natural polyphenols: An overview |journal=International Journal of Food Properties |author=Abbas, M.; Saeed, F.; Anjum, F.M. et al. |volume=20 |issue=8 |pages=1689–99 |year=2017 |doi=10.1080/10942912.2016.1220393}}</ref><ref name="TenoreAntiox17">{{cite journal |title=Antioxidant and antimicrobial properties of traditional green and purple "Napoletano" basil cultivars (''Ocimum basilicum'' L.) from Campania region (Italy) |journal=Natural Product Research |author=Tenore, G.C.; Campiglia, P.; Ciampaglia, R. et al. |volume=31 |issue=17 |pages=2067–71 |year=2017 |doi=10.1080/14786419.2016.1269103 |pmid=28025898}}</ref><ref name="CastaldoStudy18">{{cite journal |title=Study of the Chemical Components, Bioactivity and Antifungal Properties of the Coffee Husk |journal=Journal of Food Research |author=Castaldo, L.; Graziani, G.; Gaspari, A. et al. |volume=7 |issue=4 |pages=43–54 |year=2018 |doi=10.5539/jfr.v7n4p43}}</ref>
Regarding ''C. sativa'', recent studies have reported the high antioxidant potential of the plant—while also characterizing the major polyphenols, N-trans-caffeoyltyramine, and cannabisin A, B, and C—and have concluded that ''C. sativa'' would be a suitable source of polyphenols for nutraceutical or supplementation purposes.<ref name="MkpenieEffect12" /><ref name="SianoCompar18" /><ref name="FathordoobadyHemp19">{{cite journal |title=Hemp (''Cannabis sativa'' L.) Extract: Anti-Microbial Properties, Methods of Extraction, and Potential Oral Delivery |journal=Food Reviews International |author=Fathordoobady, F.; Singh, A.; Kitts, D.D. et al. |volume=35 |issue=7 |pages=664–84 |year=2019 |doi=10.1080/87559129.2019.1600539}}</ref><ref name="FrassinettiNutra18">{{cite journal |title=Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts |journal=Food Chemistry |author=Frassinetti, S.; Moccia, E.; Caltavuturo, L. et al. |volume=262 |pages=56–66 |year=2018 |doi=10.1016/j.foodchem.2018.04.078 |pmid=29751921}}</ref><ref name="NagyChemic19">{{cite journal |title=Chemical Characterization of Leaves, Male and Female Flowers from Spontaneous Cannabis (Cannabis sativa L.) Growing in Hungary |journal=Chemistry and Biodiversity |author=Nagy, D.U.; Cianfaglione, K.; Maggi, F. et al. |volume=16 |issue=3 |at=e1800562 |year=2019 |doi=10.1002/cbdv.201800562 |pmid=30548994}}</ref> Nevertheless, the most studied components of the plant are seeds, leaves, and sprouts, whereas there is still scarce literature regarding polyphenols in inflorescences. The polyphenolic profile of ''C. sativa'' is variable among the different parts of the plant, and since flowers represent an important reproductive organ, high levels of colored polyphenols are expected.<ref name="PiccolellaNutra19">{{cite journal |title=Nutraceutical polyphenols: New analytical challenges and opportunities |journal=Journal of Pharmaceutical and Biomedical Analysis |author=Piccolella, S.; Crescente, G.; Candela, L. et al. |volume=175 |at=112774 |year=2019 |doi=10.1016/j.jpba.2019.07.022 |pmid=31336288}}</ref>
Analysis of polyphenols in ''C. sativa'' samples has been previously performed using [[Fourier transform infrared spectroscopy]](FTIR) with [[Wikipedia:Attenuated total reflectance|attenuated total reflectance]] (ATR)<ref name="SianoCompar18" />, as well as [[mass spectrometry]] (MS) coupled to both [[high-performance liquid chromatography]] (HPLC) and [[gas chromatography]] (GC).<ref name="NagyChemic19" /> High-resolution mass spectrometers, such as [[Orbitrap]], have also been used coupled to ultra high-performance liquid chromatography (UHPLC) for the determination of polyphenols in vegetal matrices intended for nutraceutical purposes, including green tea and coffee.<ref name="FrassinettiNutra18" /><ref name="López-GutiérrezIdenti15">{{cite journal |title=Identification and quantification of phytochemicals in nutraceutical products from green tea by UHPLC-Orbitrap-MS |journal=Food Chemistry |author=López-Gutiérrez, N.; Romero-González, R.; Plaza-Bolaños, P. et al. |volume=173 |pages=607–18 |year=2015 |doi=10.1016/j.foodchem.2014.10.092 |pmid=25466066}}</ref><ref name="López-GutiérrezDetermina16">{{cite journal |title=Determination of polyphenols in grape-based nutraceutical products using high resolution mass spectrometry |journal=LWT - Food Science and Technology |author=López-Gutiérrez, N.; Romero-González, R.; Vidal, J.L.M. et al. |volume=71 |pages=249–59 |year=2016 |doi=10.1016/j.lwt.2016.03.037}}</ref><ref name="KoprivicaDeterm18">{{cite journal |title=Determination of the phenolic profile of peach (''Prunus persica'' L.) kernels using UHPLC–LTQ OrbiTrap MS/MS technique |journal=European Food Research and Technology |author=Koprivica, M.R.; Trifković, J.Đ.; Dramićanin, A.M. et al. |volume=244 |pages=2051–64 |year=2018 |doi=10.1007/s00217-018-3116-2}}</ref><ref name="Rodríguez-CarrascoFastAnal18">{{cite journal |title=Fast analysis of polyphenols and alkaloids in cocoa-based products by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) |journal=Food Research International |author=Rodríguez-Carrasco, Y.; Gaspari, A.; Craziani, G. et al. |volume=111 |pages=229-236 |year=2018 |doi=10.1016/j.foodres.2018.05.032 |pmid=30007681}}</ref> This methodology offers higher sensitivity and specificity, allowing a precise quantification based on exact mass measurement. Given this, this study aimed to (i) evaluate the antioxidant activity and total polyphenol content in different chemotypes of commercial ''C. sativa'' inflorescences using ''in vitro'' assays, and (ii) establish the polyphenolic profile of those inflorescences through UHPLC coupled to high-resolution Orbitrap mass spectrometry (UHPLC-Q-Orbitrap HRMS), leading to the promotion of this innovative source of bioactive compounds for use in nutraceutical formulations or for their health-promoting properties.
==Results and discussion==
===Identification of polyphenol compounds in ''C. sativa'' inflorescences though UHPLC-Q-Orbitrap HRMS===
Identification of individual phenolic acids and flavonoids was conducted through UHPLC-Q-Orbitrap HRMS. By a combination of MS and [[tandem mass spectrometry]] (MS/MS) spectra, a total of 22 different polyphenolic compounds were identified from different samples of ''C. sativa'' inflorescences (see Figures S1 and S2, Supplementary materials). Table 1 shows all mass parameters, including adduct ion, theoretical and measured mass (m/z), accuracy, and sensitivity.
{|
| STYLE="vertical-align:top;"|
{| class="wikitable" border="1" cellpadding="5" cellspacing="0" width="80%"
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="9"|'''Table 1.''' Chromatographic and spectrometric optimized parameters, including retention time, adduct ion, theoretical and measured mass (''m/z''), accuracy, and sensitivity for the investigated analytes (''n'' = 22)
|-
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Compound
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Retention Time (min)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Chemical Formula
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Adduct Ion
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Theoretical Mass (''m/z'')
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Measured Mass (''m/z'')
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Accuracy (Δ mg/kg)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|LOD (mg/kg)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|LOQ (mg/kg)
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Catechin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|7.65
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>15</sub>H<sub>14</sub>O<sub>6</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|289.07176
  | style="background-color:white; padding-left:10px; padding-right:10px;"|289.07224
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.6605
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0015
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0046
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Chlorogenic acid
  | style="background-color:white; padding-left:10px; padding-right:10px;"|8.13
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>16</sub>H<sub>18</sub>O<sub>9</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|353.08780
  | style="background-color:white; padding-left:10px; padding-right:10px;"|353.08798
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.5098
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0012
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0036
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Caffeic acid
  | style="background-color:white; padding-left:10px; padding-right:10px;"|8.24
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>9</sub>H<sub>8</sub>O<sub>4</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|179.03498
  | style="background-color:white; padding-left:10px; padding-right:10px;"|179.03455
  | style="background-color:white; padding-left:10px; padding-right:10px;"|−2.4018
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0007
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0020
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Epicatechin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|8.51
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>15</sub>H<sub>14</sub>O<sub>6</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|289.07176
  | style="background-color:white; padding-left:10px; padding-right:10px;"|289.07196
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.6919
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0014
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0043
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Luteolin-7-''O''-glucoside
  | style="background-color:white; padding-left:10px; padding-right:10px;"|9.23
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>21</sub>H<sub>20</sub>O<sub>11</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|447.09328
  | style="background-color:white; padding-left:10px; padding-right:10px;"|447.09366
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.8499
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0008
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0025
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|''p''-Coumaric acid
  | style="background-color:white; padding-left:10px; padding-right:10px;"|9.31
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>9</sub>H<sub>8</sub>O<sub>3</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|163.04001
  | style="background-color:white; padding-left:10px; padding-right:10px;"|163.03937
  | style="background-color:white; padding-left:10px; padding-right:10px;"|−3.9254
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0006
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0018
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Caffeoyl tyramine
  | style="background-color:white; padding-left:10px; padding-right:10px;"|9.46
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>17</sub>H<sub>17</sub>NO<sub>4</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|298.10848
  | style="background-color:white; padding-left:10px; padding-right:10px;"|298.10910
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.0798
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Rutin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|9.79
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>27</sub>H<sub>30</sub>O<sub>16</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|609.14611
  | style="background-color:white; padding-left:10px; padding-right:10px;"|609.14624
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.2134
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0012
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0035
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Ferulic acid
  | style="background-color:white; padding-left:10px; padding-right:10px;"|9.88
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>10</sub>H<sub>10</sub>O<sub>4</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|193.05063
  | style="background-color:white; padding-left:10px; padding-right:10px;"|193.05016
  | style="background-color:white; padding-left:10px; padding-right:10px;"|−2.4346
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0018
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0054
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Quercetin-3-glucoside
  | style="background-color:white; padding-left:10px; padding-right:10px;"|9.93
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>20</sub>H<sub>20</sub>O<sub>12</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|463.08820
  | style="background-color:white; padding-left:10px; padding-right:10px;"|463.08862
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.9070
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0017
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0052
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Kaempferol-3-''O''-glucoside
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10.36
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>21</sub>H<sub>20</sub>O<sub>11</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|447.09323
  | style="background-color:white; padding-left:10px; padding-right:10px;"|447.09360
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.8276
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0008
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0025
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Apigenin-7-glucoside
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10.36
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>21</sub>H<sub>20</sub>O<sub>10</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|431.09837
  | style="background-color:white; padding-left:10px; padding-right:10px;"|431.09836
  | style="background-color:white; padding-left:10px; padding-right:10px;"|−0.0232
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0004
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0013
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Cannabisin A
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10.54
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>34</sub>H<sub>30</sub>N<sub>2</sub>O<sub>8</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|593.19294
  | style="background-color:white; padding-left:10px; padding-right:10px;"|593.19281
  | style="background-color:white; padding-left:10px; padding-right:10px;"|−0.2192
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Quercetin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.00
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>15</sub>H<sub>10</sub>O<sub>7</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|301.03538
  | style="background-color:white; padding-left:10px; padding-right:10px;"|301.03508
  | style="background-color:white; padding-left:10px; padding-right:10px;"|−0.9966
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0021
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0064
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Luteolin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.25
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>15</sub>H<sub>10</sub>O<sub>6</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|285.04046
  | style="background-color:white; padding-left:10px; padding-right:10px;"|285.04050
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.1403
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0004
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0012
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Cannabisin B
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.41
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>34</sub>H<sub>32</sub>N<sub>2</sub>O<sub>8</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|595.20859
  | style="background-color:white; padding-left:10px; padding-right:10px;"|595.20709
  | style="background-color:white; padding-left:10px; padding-right:10px;"|−2.5201
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Kaempferol
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.60
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>15</sub>H<sub>10</sub>O<sub>6</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|285.04046
  | style="background-color:white; padding-left:10px; padding-right:10px;"|285.04086
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.4033
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0005
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0014
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Naringenin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.78
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>15</sub>H<sub>12</sub>O<sub>5</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|271.06120
  | style="background-color:white; padding-left:10px; padding-right:10px;"|271.06146
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.9592
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0005
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0015
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Apigenin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.85
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>15</sub>H<sub>10</sub>O<sub>5</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|269.04555
  | style="background-color:white; padding-left:10px; padding-right:10px;"|269.04572
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.6319
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0004
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0011
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Cannabisin C
  | style="background-color:white; padding-left:10px; padding-right:10px;"|12.34
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>35</sub>H<sub>34</sub>N<sub>2</sub>O<sub>8</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|609.22424
  | style="background-color:white; padding-left:10px; padding-right:10px;"|609.22485
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.0013
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Cannabisin B
  | style="background-color:white; padding-left:10px; padding-right:10px;"|13.77
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>21</sub>H<sub>20</sub>O<sub>6</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|367.11871
  | style="background-color:white; padding-left:10px; padding-right:10px;"|367.11871
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.0000
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Cannabisin A
  | style="background-color:white; padding-left:10px; padding-right:10px;"|14.84
  | style="background-color:white; padding-left:10px; padding-right:10px;"|C<sub>26</sub>H<sub>28</sub>O<sub>6</sub>
  | style="background-color:white; padding-left:10px; padding-right:10px;"|[M − H]−
  | style="background-color:white; padding-left:10px; padding-right:10px;"|435.18131
  | style="background-color:white; padding-left:10px; padding-right:10px;"|435.18143
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.2757
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
|-
|}
|}
Experiments were achieved in ESI− mode. All of the studied analytes exhibited better fragmentation patterns producing the quasi-molecular ion [M − H]−. After full scan analysis, the accurate mass of the characteristic ions (precursor ions) was included in an inclusion list.
Full-scan HRMS data acquisition captures all [[Sample (material)|sample]] data, enabling the identification of untargeted compounds and retrospective [[data analysis]] without the need to re-run samples. The confirmation of the structural characterization of untargeted analytes was based on the accurate mass measurement, elemental composition assignment, and MS/MS spectrum interpretation (see Figure S3, Supplementary materials).
Optimal separation of all the investigated analytes was carried out in a total run time of 20 minutes. The identification of structural isomers—catechin and epicatechin (''m/z'' 289.07176); luteolin and kaempferol (''m/z'' 285.04046)—was achieved by comparing the retention times of the peaks with those of standards (see Figure S2, Supplementary materials).
Sensitivity was evaluated by the limit of detection (LOD) and limit of quantification (LOQ). The LOD was defined as the minimum concentration, where the molecular ion could be identified with a mass error below 5 ppm, and the LOQ was set as the lowest concentration of the analyte that produced a [[Chromatography|chromatographic]] peak with a precision and accuracy <20%.
Quantitative determination of target analytes (''n'' = 16) was performed using calibration curves at eight concentration levels. Each calibration curve was prepared in triplicate. We obtained regression coefficients >0.990. Quantification of compounds (''n'' = 6) that had no standard to generate a curve was based on a representative standard of the same group.
===Quantification of phenolic acids and flavonoids in ''C. sativa'' inflorescences===
====Phenolic acids====
The predominant lignanamides (cannabisin A, B, and C) and phenolic amide (''N''-''trans''-caffeoyltyramine) found in hemp were evaluated in the assayed samples. Lignanamides and phenolic amides belong to the lignan class of compounds, and the basic unit consists of tyramine condensed with CoA-esters of ''p''-coumaric, caffeic, and coniferic acid, as suggested by Flores-Sanchez.<ref name="Flores-SanchezSecondary08">{{cite journal |title=Secondary metabolism in cannabis |journal=Phytochemistry Reviews |author=Flores-Sanchez, I.J.; Verpoorte, R. |volume=7 |pages=615–39 |year=2008 |doi=10.1007/s11101-008-9094-4}}</ref> Table 2 shows the results here obtained, expressed as the average content and concentration range of the phenolic acids and flavonoids detected in different hemp varieties. In the here analyzed samples, lignanamides represented from 0.02% to 0.47% of total polyphenols, in a concentration range between 0.10 and 2.2 mg/kg. Cannabisin A was found as the most commonly detected lignanamide, ranging from 0.01 (Tiborszallasi) up to 2.86 mg/kg (Kompolti), with a mean value of 1.0 mg/kg for all cultivars. Cannabisin B was found at levels three times lower with respect to Cannabisin A, ranging from 0.4 to 0.5 mg/kg. In addition, when cannabisin A was found at very low concentrations, cannabisin B was not detected. Cannabisin C showed to be the least relevant lignanamide, quantified between 0.003 and 0.38 mg/kg. Concerning the occurrence of lignanamides in ''C. sativa'' seed, available studies reported the highest concentration up to thousands of milligram per kilogram.<ref name="IrakliEffect19">{{cite journal |title=Effect οf Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (''Cannabis sativa'' L.) Seeds |journal=Antioxidants |author=Irakli, M.; Tsaliki, E.; Kalivas, A. et al. |volume=8 |issue=10 |at=491 |year=2019 |doi=10.3390/antiox8100491 |pmid=31627349 |pmc=PMC6826498}}</ref> As far as phenol amides were concerned, ''N''-''trans''-caffeoyltyramine was quantified at a concentration range from 0.1 (Kompolti) to 76.2 mg/kg (CS), with a mean value of 23.7 mg/kg for all cultivars. These levels are in line with the data reported on hemp seed.<ref name="IrakliEffect19" />
Lignanamides and phenolic amides are known to have a wide range of important biological properties, including antioxidant, anti-inflammatory, and antihyperlipidemic activities.<ref name="YanCharacter15">{{cite journal |title=Characterization of Lignanamides from Hemp (''Cannabis sativa'' L.) Seed and Their Antioxidant and Acetylcholinesterase Inhibitory Activities |journal=Journal of Agricultural and Food Chemistry |author=Yan, X.; Tang, J.; Passos, C.dP. et al. |volume=63 |issue=49 |pages=10611–9 |year=2015 |doi=10.1021/acs.jafc.5b05282 |pmid=26585089}}</ref><ref name="ChenLignan17">{{cite journal |title=Lignanamides with potent antihyperlipidemic activities from the root bark of Lycium chinense |journal=Fitoterapia |author=Chen, H.; Li, Y.-J.; Sun, Y.-J. et al. |volume=122 |pages=119–25 |year=2017 |doi=10.1016/j.fitote.2017.09.004 |pmid=28890177}}</ref><ref name="ZhangNeolig13">{{cite journal |title=Neolignanamides, lignanamides, and other phenolic compounds from the root bark of Lycium chinense |journal=Journal of Natural Products |author=Zhang, J.-X.; Guan, S.-H.; Feng, R.-H. et al. |volume=76 |issue=1 |pages=51-8 |year=2013 |doi=10.1021/np300655y |pmid=23282106}}</ref><ref name="SunAnti14">{{cite journal |title=Anti-inflammatory lignanamides from the roots of ''Solanum melongena'' L. |journal=Fitoterapia |author=Sun, J.; Gu, Y.-F.; Su, X.-Q. et al. |volume=98 |pages=110–6 |year=2014 |doi=10.1016/j.fitote.2014.07.012 |pmid=25068200}}</ref><ref name="GaoThree15">{{cite journal |title=Three New Dimers and Two Monomers of Phenolic Amides from the Fruits of Lycium barbarum and Their Antioxidant Activities |journal=Journal of Agricultural and Food Chemistry |author=Gao, K.; Ma, D.; Cheng, Y. et al. |volume=63 |issue=4 |pages=1067–75 |year=2015 |doi=10.1021/jf5049222 |pmid=25603493}}</ref> Apart from those, some important hydroxycinnamic acids (chlorogenic acid, caffeic acid, ''p''-coumaric acid, and ferulic acid) were also evaluated in the here analyzed inflorescences samples. This important class of phenolic acids represented from 18.6% to 29.7% of total polyphenols found in samples. Among the hydroxycinnamic acids, ''p''-coumaric acid was quantified at concentrations significantly greater (''p'' < 0.05) than the other related compounds in all hemp cultivars analyzed, except in Kompolti samples. Moreover, the most common hydroxycinnamic acids found in Kompolti cultivar was ferulic acid, at an average content of 19.7 mg/kg (range from 3.0 to 35.6 mg/kg). Caffeic acid was detected in the lowest amount for all the analyzed cultivars. The CS hemp variety showed the highest concentration of hydroxycinnamic acids, compared with other varieties at an average content of 85.4 mg/kg. On the other hand, the observed concentration variability of phenolic acids may be a result of the influence of many biotic and abiotic factors that play an important role in the biosynthetic process of the studied compounds.<ref name="BiesiadaBiotic12">{{cite journal |title=Biotic and Abiotic Factors Affecting the Content of the Chosen Antioxidant Compounds in Vegetables |journal=Vegetable Crops Research Bulletin |author=Biesiada, A.; Tomczak, A. |volume=76 |issue=2012 |pages=55–78 |year=2012 |doi=10.2478/v10032-012-0004-3}}</ref>
{|
| STYLE="vertical-align:top;"|
{| class="wikitable" border="1" cellpadding="5" cellspacing="0" width="100%"
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="9"|'''Table 2.''' Polyphenol content in the analyzed ''Cannabis sativa'' samples (''n'' = 22). Results are shown based on the different cultivar ''C. sativa'' inflorescences.
|-
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;" rowspan="2"|Sample
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;" colspan="2"|Kompolti (''n'' = 9)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;" colspan="2"|Tiborszallasi (''n'' = 7)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;" colspan="2"|Antal (''n'' = 7)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;" colspan="2"|Selected Carmagnola (CS) (''n'' = 4)
|-
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Average (mg/kg)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Range (mg/kg)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Average (mg/kg)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Range (mg/kg)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Average (mg/kg)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Range (mg/kg)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Average (mg/kg)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Range (mg/kg)
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="9"|'''Phenolic acids'''
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|''Hydroxycinnamic acids''
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="8"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Chlorogenic acid
  | style="background-color:white; padding-left:10px; padding-right:10px;"|12.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.2–28.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|9.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.0–20.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|3.5–23.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|15.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.1–22.1
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Caffeic acid
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.4–2.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|4.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.2–6.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|3.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.6–5.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|3.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.9–4.6
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|''p''-Coumaric acid
  | style="background-color:white; padding-left:10px; padding-right:10px;"|13.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.5–28.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|37.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|15.5–84.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|28.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|5.1–105.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|41.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|18.1–93.0
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Ferulic acid
  | style="background-color:white; padding-left:10px; padding-right:10px;"|19.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|3.0–35.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|26.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|14.7–35.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|18.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|4.7–30.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|25.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|20.2–33.4
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|&nbsp;&nbsp;&nbsp;'''Totals'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|'''46.2'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|'''76.5'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|'''60.5'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|'''85.4'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|''Lignanamides''
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="8"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Cannabisin A
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.1–2.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.01
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.005–0.01
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.2–1.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.09–2.85
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Cannabisin B
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.40
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.02–1.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.4–0.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.02–1.15
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Cannabisin C
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.10
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.01–0.35
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.09
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.01–0.27
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.14
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.01–0.38
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.02
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.003–0.05
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|&nbsp;&nbsp;&nbsp;'''Totals'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.60
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.12
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|''Phenolic amides''
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="8"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|''N''-''trans''-Caffeoyltyramine
  | style="background-color:white; padding-left:10px; padding-right:10px;"|17.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.1–59.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|15.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|4.7–30.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|25.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|5.7–44.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|36.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|5.3–76.2
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|&nbsp;&nbsp;&nbsp;'''Totals'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|17.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|15.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|25.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|36.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="9"|'''Flavonoids'''
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|''Flavonols''
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="8"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Rutin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|13.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.7–42.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|27.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|14.1–38.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|12.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.4–24.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|27.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|7.8–60.8
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Quercetin-3-glucoside
  | style="background-color:white; padding-left:10px; padding-right:10px;"|37.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.2–87.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|94.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|23.2–269.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|55.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10.0–172.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|126.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|58.9–285.9
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Kaempferol-3-''O''-glucoside
  | style="background-color:white; padding-left:10px; padding-right:10px;"|6.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.1–15.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|15.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|4.2–44.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|9.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.6–29.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|26.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|12.6–46.6
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Quercetin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|12.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|6.2–24.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|15.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|6.3–26.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|6.5–16.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|28.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|8.2–58.5
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Kaempferol
  | style="background-color:white; padding-left:10px; padding-right:10px;"|3.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.7–7.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|5.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.3–8.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.3–3.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|9.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.6–13.6
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|&nbsp;&nbsp;&nbsp;'''Totals'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|73.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|158.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|90.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|217.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|''Flavones''
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="8"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Cannflavin A
  | style="background-color:white; padding-left:10px; padding-right:10px;"|55.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|35.2–130.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|72.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|30.9–107.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|51.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|19.6–106.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|67.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|28.4–118.6
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Cannflavin B
  | style="background-color:white; padding-left:10px; padding-right:10px;"|55.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|30.2–110.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|86.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|26.2–215.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|98.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|32.9–182.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|97.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.9–154.4
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Luteolin-7-''O''-glucoside
  | style="background-color:white; padding-left:10px; padding-right:10px;"|9.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|3.3–19.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|13.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.1–42.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|13.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|8.8–17.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|22.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.1–52.6
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Apigenin-7-''O''-glucoside
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.1–5.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.1–6.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.2–3.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.8–6.5
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Luteolin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|12.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.8–23.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|19.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|6.3–38.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|8.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.9–14.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|25.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|16.9–38.2
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Apigenin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|5.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.1–11.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|6.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.4–16.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|4.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.4–8.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|8.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|6.3–13.9
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|&nbsp;&nbsp;&nbsp;'''Totals'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|139.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|201.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|27.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|59.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|''Flavan-3-ols''
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="8"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Catechin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|85.3
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.1–334.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|16.8
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.6–43.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|40.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.9–155.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|70.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|39.2–115.2
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Epicatechin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|30.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.6–88.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|64.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10.6–183.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|63.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.1–156.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.1–156.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|21.5–194.6
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|&nbsp;&nbsp;&nbsp;'''Totals'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|116.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|81.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|104.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|177.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|''Flavanone''
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="8"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Naringenin
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.50
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.01–1.10
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.3–1.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.5–2.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.7–1.8
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|&nbsp;&nbsp;&nbsp;'''Totals'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.50
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.0
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="9"|
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|&nbsp;&nbsp;&nbsp;'''Total bioactive'''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|377.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|532.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|461.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
  | style="background-color:white; padding-left:10px; padding-right:10px;"|743.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|
|-
|}
|}
====Flavonoids====
Flavonoids are plant-derived phytochemicals that accounted for over 80% of the phenolic components in the assayed samples. Flavonoids—namely flavones, flavanones, flavonols, and flavan-3-ols, including their main aglycones, glycosides, and methylated derivatives—have been quantified in the assayed samples, as shown in Table 2, above. Flavones represented the highest proportion of flavonoids found in analyzed samples, ranging from 30.1% (CS) to 35.4% (Kompolti) of total polyphenols, cannflavin A and cannflavin B being the most commonly detected flavones, with a mean value of 61.8 and 84.5 mg/kg, respectively. These levels found in inflorescences showed a ten-to-hundred-fold increase when compared to leaf-based samples previously analyzed by Pollastro ''et al.''<ref name="PollastroCanna18" />, who reported cannflavin A and B at 6 and 0.8 mg/kg, respectively. Cannflavins A and B, methylated isoprenoid flavones, appear to be ''Cannabis''-specific and are known to exert a potent anti-inflammatory activity.<ref name="ReaBiosynth19">{{cite journal |title=Biosynthesis of cannflavins A and B from Cannabis sativa L |journal=Phytochemistry |author=Rea, K.A.; Casaretto, J.A.; Al-Abdul-Wahid, M.S. et al. |volume=164 |pages=162–71 |year=2019 |doi=10.1016/j.phytochem.2019.05.009 |pmid=31151063}}</ref> In this context, Werz ''et al.''<ref name="WerzCannflav14">{{cite journal |title=Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase |journal=PharmaNutrition |author=Werz, O.; Seegers, J.; Schaible, A.M. et al. |volume=2 |issue=3 |pages=53–60 |year=2014 |doi=10.1016/j.phanu.2014.05.001}}</ref> reported that cannflavin A and B were able to inhibit the production of pro-inflammatory prostanoids and leukotrienes in ''in vitro'' assays. Moreover, Barrett ''et al.'' concluded that cannflavins A and B promoted the inhibition of PGE2 in human cells up to thirty times in relation to aspirin.<ref name="BarrettIsol85">{{cite journal |title=Isolation from Cannabis sativa L. of cannflavin--a novel inhibitor of prostaglandin production |journal=Biochemical Pharmacology |author=Barrett, M.L.; Gordon, D.; Evans, F.J. et al. |volume=34 |issue=11 |pages=2019–24 |year=1985 |doi=10.1016/0006-2952(85)90325-9 |pmid=3859295}}</ref><ref name="BarrettCannflav86">{{cite journal |title=Cannflavin A and B, prenylated flavones from ''Cannabis sativa'' L. |journal=Experientia |author=Barrett, M.L.; Scutt, A.M.; Evans, F.J. |volume=42 |issue=4 |pages=452–3 |year=1986 |doi=10.1007/BF02118655 |pmid=3754224}}</ref> In addition, cannflavin A showed a neuroprotective effect against amyloid β-mediated neurotoxicity in PC12 cells.<ref name="EggersNovel19">{{cite journal |title=Novel cannabis flavonoid, cannflavin A displays both a hormetic and neuroprotective profile against amyloid β-mediated neurotoxicity in PC12 cells: Comparison with geranylated flavonoids, mimulone and diplacone |journal=Biochemical Pharmacology |author=Eggers, C.; Fujitani, M.; Kato, R. et al. |volume=169 |at=113609 |year=2019 |doi=10.1016/j.bcp.2019.08.011 |pmid=31437460}}</ref> As shown in Table 2, among flavonols, quercetin-3-glucoside was quantified at concentrations significantly greater (''p'' < 0.05) than the other related compounds, ranging from 2.2 (Kompolti) to 285.9 mg/kg (CS), with a mean value of 78.4 mg/kg. On the other hand, flavan-3-ols, mainly represented by catechin and epicatechin, were detected at mean values of 53.3 and 66.2 mg/kg for all cultivars, respectively. Regarding epicatechin, the CS cultivar showed a two-fold increase compared with other cultivars assayed. Of the minor flavonoids, the compound naringenin was detected.
Overall, the data clearly indicate that the CS cultivar showed the highest concentrations of the investigated polyphenols (743.5 mg/kg) compared to the other cultivars.
Industrial hemp inflorescence may represent an innovative source of bioactive compounds—such as a high content of cannflavin A and B, which appear to be ''Cannabis''-specific—to be used in nutraceutical formulations.
===Total phenolic contents and antioxidant activity of ''C. sativa'' extracts===
====Total phenolic contents of ''C. sativa'' extracts====
The amounts of total phenolic contents of ''C. sativa'' extracts were examined. The results are summarized in Table 3. Total phenolics, flavonoids, and phenolic acids ranged from 10.510 to 48.875 mg GAE/g for the different cultivars of ''C. sativa''. Among the studied cultivars, the highest total phenol content resulted from the CS cultivar, with a content of 41.517 mg GAE/g, and the lowest amount emerges for the Kompolti variety (10.510 mg GAE/g). Total polyphenol content quantified in analyzed samples was similar to those recently reported by Vonapartis ''et al.''<ref name="VonapartisSeed15">{{cite journal |title=Seed composition of ten industrial hemp cultivars approved for production in Canada |journal=Journal of Food Composition and Analysis |author=Vonapartis, E.; Aubin, M.-P.; Seguin, P. et al. |volume=39 |pages=8–12 |year=2015 |doi=10.1016/j.jfca.2014.11.004}}</ref>, who found hemp seed samples (''n'' = 10) to be in a concentration range from 13.68 to 51.60 mg GAE/g.
{|
| STYLE="vertical-align:top;"|
{| class="wikitable" border="1" cellpadding="5" cellspacing="0" width="80%"
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="5"|'''Table 3.''' Total polyphenol compounds expressed as mg GAE/g and antioxidant activity expressed as mmol trolox/kg of ''C. sativa'' extracts; GAE: gallic acid equivalents, TPC: total phenolic content, DPPH: 2,2-diphenyl-1-picrylhydrazyl free-radical scavenging, trolox: equivalent antioxidant capacity (TEAC)
|-
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;" rowspan="2"|Cultivar
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;" colspan="2"|TPC
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;" colspan="2"|DPPH
|-
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Average (mg GAE/g)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Range (mg GAE/g)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Average (mmol trolox/kg)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Range (mmol trolox/kg)
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Kompolti (''n'' = 9)
  | style="background-color:white; padding-left:10px; padding-right:10px;"|26.2 ± 0.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10.5–47.2
  | style="background-color:white; padding-left:10px; padding-right:10px;"|46.7 ± 0.7
  | style="background-color:white; padding-left:10px; padding-right:10px;"|36.6–55.0
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Tiborszallasi (''n'' = 7)
  | style="background-color:white; padding-left:10px; padding-right:10px;"|29.9 ± 0.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|21.9–42.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|61.3 ± 0.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|50.8–72.7
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Antal (''n'' = 7)
  | style="background-color:white; padding-left:10px; padding-right:10px;"|30.7 ± 0.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|17.0–48.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|45.9 ± 0.4
  | style="background-color:white; padding-left:10px; padding-right:10px;"|27.5–67.5
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Selected Carmagnola (CS) (''n''=4)
  | style="background-color:white; padding-left:10px; padding-right:10px;"|33.2 ± 0.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|26.3–41.5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|63.6 ± 0.9
  | style="background-color:white; padding-left:10px; padding-right:10px;"|59.1–77.6
|-
|}
|}
''C. sativa'' is a remarkable plant widely investigated by several researchers, given its rich fount of valuable natural components. Apart from cannabinoid production, the ''C. sativa'' plant is also able to synthesize non-cannabinoid secondary metabolites possessing beneficial effects for human health.<ref name="AndreCanna16" /> [38] A summary of the available surveys on total polyphenol content of the different parts of ''C. sativa'' is shown in Table 4. In spite of several experiments being performed on this plant<ref name="MkpenieEffect12" /><ref name="SianoCompar18" /><ref name="FrassinettiNutra18" /><ref name="GonçalvesCanna19">{{cite journal |title=Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination |journal=Medicines |author=Gonçalves, J.; Rosado, T.; Soares, S. et al. |volume=6 |issue=1 |at=31 |year=2019 |doi=10.3390/medicines6010031 |pmid=30813390 |pmc=PMC6473697}}</ref><ref name="MocciaAntiprol20">{{cite journal |title=Antiproliferative and antioxidant effect of polar hemp extracts (''Cannabis sativa'' L., Fedora ''cv''.) in human colorectal cell lines |journal=International Journal of Food Sciences and Nutrition |author=Moccia, S.; Siano, F.; Russo, G.L. et al. |volume=71 |issue=4 |pages=410–23 |year=2020 |doi=10.1080/09637486.2019.1666804 |pmid=31544542}}</ref><ref name="SmeriglioPoly16">{{cite journal |title=Polyphenolic Compounds and Antioxidant Activity of Cold-Pressed Seed Oil from Finola Cultivar of ''Cannabis sativa'' L. |journal=Phytotherapy Research |author=Smeriglio, A.; Galati, E.M.; Monforte, M.T. et al. |volume=30 |issue=8 |pages=1298-307 |year=2016 |doi=10.1002/ptr.5623 |pmid=27076277}}</ref><ref name="ZoricaEffect18">{{cite journal |title=Effect of extraction solvent on total polyphenols content and antioxidant activity of ''Cannabis sativa'' L. |journal=Lekovite sirovine |author=Zorica, D.; Senka. V.; Jelena, V. et al. |volume=38 |pages=17–21 |year=2018 |doi=10.5937/leksir1838017D}}</ref><ref name="FerranteMultiple19">{{cite journal |title=Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity |journal=Food and Chemical Toxicology |author=Ferrante, C.; Recinella, L.; Ronci, M. et al. |volume=125 |pages=452–61 |year=2019 |doi=10.1016/j.fct.2019.01.035 |pmid=30711720}}</ref><ref name="MilulecHemp19">{{cite journal |title=Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread |journal=LWT |author=Mikulec, A.; Kowalski, S.; Sabat, R. et al. |volume=102 |pages=164-172 |year=2019 |doi=10.1016/j.lwt.2018.12.028}}</ref>, the study of inflorescences remains low, making the comparison of results difficult. Recently, Ferrante ''et al.''<ref name="FerranteMultiple19" /> investigated the total phenolic content in the water fraction extracted from aerial flowers of the CS cultivar, reporting a lower value compared to the results here obtained.
{|
| STYLE="vertical-align:top;"|
{| class="wikitable" border="1" cellpadding="5" cellspacing="0" width="80%"
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="3"|'''Table 4.''' Recent surveys reporting the total phenolic content (mg GAE/g) in different parts of ''C. sativa'' samples; TPC: total phenolic content
|-
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Part of Plant
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|TPC (mg GAE/g)
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|References
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Leaves
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.09–0.56
  | style="background-color:white; padding-left:10px; padding-right:10px;"|<ref name="MkpenieEffect12" />
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Seeds
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.77–51.6
  | style="background-color:white; padding-left:10px; padding-right:10px;"|<ref name="SianoCompar18" /><ref name="FrassinettiNutra18" /><ref name="VonapartisSeed15" /><ref name="MocciaAntiprol20" />
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Oil
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.02–2.67
  | style="background-color:white; padding-left:10px; padding-right:10px;"|<ref name="SianoCompar18" /><ref name="MocciaAntiprol20" /><ref name="SmeriglioPoly16" />
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Flour
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.74–1.71
  | style="background-color:white; padding-left:10px; padding-right:10px;"|<ref name="SianoCompar18" /><ref name="MocciaAntiprol20" /><ref name="MilulecHemp19" />
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Sprouts
  | style="background-color:white; padding-left:10px; padding-right:10px;"|6.16
  | style="background-color:white; padding-left:10px; padding-right:10px;"|<ref name="FrassinettiNutra18" />
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Aerial parts
  | style="background-color:white; padding-left:10px; padding-right:10px;"|5.85–17.05
  | style="background-color:white; padding-left:10px; padding-right:10px;"|<ref name="ZoricaEffect18" />
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Flowers
  | style="background-color:white; padding-left:10px; padding-right:10px;"|4.7–8.1
  | style="background-color:white; padding-left:10px; padding-right:10px;"|<ref name="FerranteMultiple19" />
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Inflorescences
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10.51–52.58
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Current work
|-
|}
|}
With respect to other parts of the same plant, the given TPC in ''C. sativa'' inflorescences was significantly (''p'' < 0.05) higher than the reported contents, resulting in the highest potential fount of phenols.
The correlation between TPC and UHPLC-Q-Orbitrap HRMS findings was evaluated through Pearson’s correlation coefficient (PCC). The results showed a strong positive correlation (PCC = 0.892). Scientific evidence suggests that using some combination of assays is the best approach to properly characterize the phenolic composition.<ref name="DaBeerPhenolics04">{{cite journal |title=Phenolics: A Comparison of Diverse Analytical Methods |journal=American Journal of Enology and Viticulture |author=Da Beer, D.; Harbertson, J.F.; Kilmartin, P.A. et al. |volume=55 |pages=389–400 |year=2004 |url=https://www.ajevonline.org/content/55/4/389}}</ref>
====Antioxidant activity of ''C. sativa'' extracts====
The results of antioxidant activity evaluated through DPPH free radical-scavenging activity are tabulated in the prior Table 3 and expressed as mmol trolox/kg. A calibration curve of inhibition, built with trolox, was employed as a positive control of the assay. Antioxidant activity was included in the range of 27.532 to 77.578 mmol trolox/kg (average 54.401 mmol trolox/kg) for the different cultivars of ''C. sativa''. In this case, the highest antioxidant capability was found in the CS variety (''p'' < 0.05), with a content of 77.578 mmol trolox/kg, while the lowest amount was found in the Antal variety (27.532 mmol trolox/kg).
Antioxidant capacity is largely used as a parameter to characterize bioactive components from foods or medicinal plants. The assessment of polyphenol content in inflorescences of ''C. sativa'' extract is useful to define their potential antioxidant value and their free radical scavenging capacity. Increasing evidence reports that antioxidants may protect cell constituents against oxidative damage and shrink the risk of various diseases connected to oxidative stress.<ref name="OlszowyWhatIs19">{{cite journal |title=What is responsible for antioxidant properties of polyphenolic compounds from plants? |journal=Plant Physiology and Biochemistry |author=Olszowy, M. |volume=144 |pages=135-143 |year=2019 |doi=10.1016/j.plaphy.2019.09.039 |pmid=31563754}}</ref>
The synergy effect or interaction of phenolic compounds in food products contribute, for the most part, to the overall antioxidant capacity, despite bioactivity decoupled from phenolic compounds being reported in the literature.<ref name="HelenoBioact15">{{cite journal |title=Bioactivity of phenolic acids: Metabolites versus parent compounds: A review |journal=Food Chemistry |author=Heleno, S.A.; Marins, A.; Queiroz, M.J.R.P. et al. |volume=173 |pages=501–13 |year=2015 |doi=10.1016/j.foodchem.2014.10.057 |pmid=25466052}}</ref><ref name="BurriAntiox17">{{cite journal |title=Antioxidant capacity and major phenol compounds of horticultural plant materials not usually used |journal=Journal of Functional Foods |author=Burri, S.C.M.; Ekholm, A.; Håkansson, Å. et al. |volume=38 |issue=Pt A |pages=119–27 |year=2017 |doi=10.1016/j.jff.2017.09.003 |pmid=29129982 |pmc=PMC5666123}}</ref>
Several researchers have studied the bioactivity of various parts of ''C. sativa''<ref name="MkpenieEffect12" /><ref name="SianoCompar18" /><ref name="FrassinettiNutra18" /><ref name="MocciaAntiprol20" /><ref name="SmeriglioPoly16" /><ref name="ZoricaEffect18" /><ref name="FerranteMultiple19" /><ref name="MilulecHemp19" />, and, on the whole, the extracts were found to be rich sources of bioactive compounds. Regarding antioxidant capability, Smeriglio ''et al.''<ref name="SmeriglioPoly16" /> reported content of 146.7 mmol trolox/100 g in seed oil from the Finola cultivar and lower amounts for the lipophilic fraction (0.125 mmol trolox/100 g) and hydrophilic fractions (0.038 mmol trolox/100 g). Mikulek ''et al.''<ref name="MilulecHemp19" /> have reported an amount of 158 mmol trolox/100 kg in flour.
Currently, scarce data on the antioxidant activity of ''C. sativa'' inflorescence are available in the literature. Compared to other researchers' findings that have reported the antioxidant activity of the different parts of ''C. sativa'', these inflorescence analyses have shown the highest potentials.
==Materials and methods==
===Reagents and materials===
A total of twenty-seven samples of industrial ''C. sativa'' female inflorescences of different varieties, including Kompolti (''n'' = 9), Tiborszallasi (''n'' = 7), Antal (''n'' = 7), and Selected Carmagnola (CS) (''n'' = 4) were provided by several hemp farmers located in Italy. All inflorescences were harvested in October 2019 and fulfilled the requirements of European Commission regulation (No 809/2014)<ref name="EC809/2014">{{cite web |url=https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32014R0809 |title=Commission Implementing Regulation (EU) No 809/2014 of 17 July 2014 laying down rules for the application of Regulation (EU) No 1306/2013 of the European Parliament and of the Council with regard to the integrated administration and control system, rural development measures and cross compliance |author=European Commission |work=EUR-Lex |date=31 July 2014}}</ref> regarding their psychoactive cannabinoids content. The samples were dried at 36 °C using a forced-air laboratory oven until the sample moisture reached a level from 8% to 12%. The samples were milled into powder using a laboratory mill (particle size 200 µm) and then stored at 4 °C until analysis.
The polyphenol standards (purity >98%) were purchased from Sigma Aldrich (Milan, Italy), and included: chlorogenic acid, caffeic acid, ''p''-coumaric acid, ferulic acid (Hydroxycinnamic Acids); rutin, quercetin-3-glucoside, kaempferol-3-''O''-glucoside, quercetin, kaempferol (Flavonol); luteolin-7-''O''-glucoside, apigenin-7-''O''-glucoside, luteolin, apigenin (Flavones); catechin, epicatechin (Flavan-3-ols); and naringenin (Flavanone).
Due to the lack of analytical standards, the identification of polyphenols (''n'' = 6)—including cannabisin A, cannabisin B, cannabisin C (Lignanamide), cannflavin A, cannflavin B (Flavanone) and N-trans-caffeoyltyramine (Phenolic amides)—was carried out by post-target screening.
Methanol (MeOH) and water (LC-MS grade) were acquired from Merk (Darmstadt, Germany), and formic acid (mass spectrometry grade) was purchased from Fluka (Milan, Italy).
===Polyphenol extraction===
Extraction was carried out according to the procedure described by Calzolari ''et al.''<ref name="CalzolariHigh17">{{cite journal |title=High added-value compounds from Cannabis threshing residues |journal=Industrial Crops and Products |author=Calzolari, D.; Magagnini, G.; Lucini, L. et al. |volume=108 |pages=558–63 |year=2017 |doi=10.1016/j.indcrop.2017.06.063}}</ref>, with some modifications. Briefly, 100 mg of sample was suspended in 15 mL of methanol, the mixture was vortexed intensively for three minutes and sonicated in the dark, at 4 °C, for 30 minutes. Then, the mixture was centrifuged at 5000× g at 4 °C for 10 minutes. The supernatants were pooled, filtered through 0.2 μm syringe filters (26 mm, RC membrane, Phenomenex, Castel Maggiore, Italy), and an aliquot introduced into a chromatography vial.
===Determination of total phenolic content (TPC)===
Total phenolic content was performed according to the Folin–Ciocalteu method<ref name="AinsworthEstim07">{{cite journal |title=Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent |journal=Nature Protocols |author=Ainsworth, E.A.; Gillespie, K.M. |volume=2 |issue=4 |pages=875–7 |year=2007 |doi=10.1038/nprot.2007.102 |pmid=17446889}}</ref>, with slight modifications. Briefly, 125 μL of extract sample was diluted in 500 μL of deionized water, then 125 μL of the Folin–Ciocalteu reagent was added to the mixture, followed by six minutes of incubation at room temperature. Afterward, 1.25 mL of 7.5% of sodium carbonate solution and 1 mL of deionized water were added in the mixture. The absorbance at 760 nm after 90 minutes of incubation in the dark was measured. The TPC of inflorescence samples was expressed as mg of gallic acid equivalents (GAE)/g of sample.
===Determination of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging===
The radical-scavenging activity of the sample extract was determined using the method suggested by Brand-Williams ''et al.''<ref name="Brand-WilliamsUseOf95">{{cite journal |title=Use of a free radical method to evaluate antioxidant activity |journal=LWT |author=Brand-Williams, W.; Cuvelier, M.E.; Berset, C. |volume=28 |issue=1 |pages=25–30 |year=1995 |doi=10.1016/S0023-6438(95)80008-5}}</ref>, with some modifications. Briefly, to obtain the DPPH radical working solution, the DPPH standard (4 mg in 10 mL) was diluted with methanol until the absorbance value reached 0.90 (±0.02) at 517 nm. Then, 200 μL of sample extract was added to 1 mL of DPPH radical working solution. The mixture was shaken vigorously, and then the decrease absorbance after 10 minutes at 517 nm was measured. The results were expressed as mmol trolox equivalents (TE)/kg of the sample.
===UHPLC-Q-Orbitrap HRMS analysis===
The polyphenolic profile was analyzed by an ultra high-performance liquid chromatography system (UHPLC, Dionex UltiMate 3000, Thermo Fisher Scientific, Waltham, MA, USA) equipped with a degassing system, a Quaternary UHPLC pump working at 1250 bar, and an autosampler device. Chromatographic separation of polyphenols was performed with a thermostated (T = 25 °C) Kinetex 2.6 µm Biphenyl (100 × 2.1 mm, Phenomenex) column. The injection volume was 2 μL. The mobile phase consisted of a binary solution: water (phase A) and methanol (phase B), both mobile phases contained 0.1% of formic acid. A gradient elution program was applied as follows: an initial 5% B, increased to 30% B in 1.3 minutes, and a new to 100% B in eight minutes. The gradient was held for three minutes at 100% B and reduced to 5% B in two minutes. The flow rate was 0.2 mL/min. Afterward, the gradient switched back to 5% in two minutes, and another two minutes for column re-equilibration at 5%.
The UHPLC system was coupled to a Q-Exactive Orbitrap mass spectrometer (UHPLC, Thermo Fischer Scientific, Waltham, MA, USA). An ESI source (Thermo Fisher Scientific, Waltham, MA, USA) was operated in negative ion mode (ESI-), setting two scan events (Full ion MS and All ion fragmentation, AIF) for all compounds of interest. Full scan data were acquired at a resolving power of 35,000 FWHM (full width at half maximum). Ion source parameters were spray voltage 2.8 kV (negative mode), capillary temperature 310 °C, S-lens RF level 50, sheath gas pressure (N2 > 95%) 35, auxiliary gas (N2 > 95%) 10, and auxiliary gas heater temperature 350 °C. The value for the automatic gain control (AGC) target was set at 3 × 106, a scan range of m/z 90 to 1000 was chosen, and the injection time was set to 200 ms. The scan-rate was set at two scans/s. Data analysis and processing were performed using Xcalibur software, v. 3.1.66.10.
For the scan event of AIF, the parameters were set as follows: mass resolving power of 17,500 FWHM at 200 ms; scan time = 0.10 seconds. The collision energy was varied in the range of 10 to 45 eV to obtain representative product ion spectra. Data processing was performed by the Quan/Qual Browser Xcalibur software, v. 3.1.66.10 (Xcalibur, Thermo Fisher Scientific, Waltham, MA, USA). Detection was based on calculated exact mass with a mass error below 5 ppm and on the retention time of the molecular ion; while regarding the fragments on the intensity threshold of 1000 and a mass tolerance of 5 ppm. Quantitative results were obtained working in scan mode with HRMS exploiting the high selectivity achieved in full-scan mode, whereas MS/HRMS information was used for confirmatory purposes.
===Statistics and data analysis===
Values were expressed as the average values and concentration range of triplicate measurements. The differences between average values were evaluated by using Tukey’s test at the level of significance ''p'' < 0.05. Statistical analysis was performed using STATA 12 (STATA corp LP, College Station, TX, USA).
==Conclusions==
Even if studies regarding the beneficial effects of hemp seeds, oils, and leaves are numerous, and research on ''C. sativa'' extract is constantly in progress, there are few references concerning the biological activities and the potential health benefits of ''C. sativa'' inflorescence. A comprehensive analysis of the bioactivity for Kompolti, Tiborszallasi, Antal, and Selected Carmagnola (CS) cultivars of ''C. sativa'' inflorescences and polyphenol characterization through UHPLC-Q-Orbitrap spectrometry measurement were carried out in this research work for the first time.
A comparison of the studied cultivars showed that the CS cultivar had the highest investigated polyphenol amount (sum average of 743.5 mg/kg) and TPC content (33.2 ± 0.5 mg GAE/g), as well as free radical-scavenging activity (63.6 ± 0.9 mmol trolox/kg); thus, this appears to be the most promising cultivar. In spite of the renovated interest for this cultivar, data about the correlation on bioactivity and cultivar are still fragmentary.
Our results highlighted the possibility of also using this part of the plant, which represents a valuable source of natural antioxidants and a rich fount of polyphenols, including cannflavins, which represent bioactive compounds not common in other typical plants. It is, therefore, desirable to continue to expand the understanding of this actual topic to estimate their efficacy for future applications for nutraceutical purposes.
==Supplementary materials==
[https://www.mdpi.com/1420-3049/25/3/631/s1 Supplementary file 1]: This PDF file contains Supplementary Figures S1–S3.
==Acknowledgements==
===Author contributions===
A.R. and Y.R.C. conceived and designed the experiments; L.I. performed the experiments; G.G. and A.G. analyzed the data, L.I., L.C., A.N. wrote the paper and Y.R.C. review and editing. All authors have read and agreed to the published version of the manuscript.
===Funding===
This research received no external funding.
===Conflicts of interest===
The authors declare no conflicts of interest.


==References==
==References==

Latest revision as of 20:01, 25 November 2020

Full article title Analysis of phenolic compounds in commercial Cannabis sativa L. inflorescences using UHPLC-Q-Orbitrap HRMS
Journal Molecules
Author(s) Izzo, Luana; Castaldo, Luigi; Narváez, Alfonso; Graziani, Giulia; Gaspari, Anna; Rodríguez-Carrasco, Yelko; Ritieni, Alberto
Author affiliation(s) University of Naples "Federico II," University of Valencia
Primary contact Email: luana dot izzo at unina dot it
Editors Efferth, Thomas
Year published 2020
Volume and issue 25(3)
Article # 631
DOI 10.3390/molecules25030631
ISSN 1420-3049
Distribution license Creative Commons Attribution 4.0 International
Website https://www.mdpi.com/1420-3049/25/3/631/htm
Download https://www.mdpi.com/1420-3049/25/3/631/pdf (PDF)

Abstract

Industrial hemp (Cannabis sativa L., family Cannabaceae) contains a vast number of relevant bioactive organic compounds, namely polyphenols, including flavonoids, phenolic acids, phenol amides, and lignanamides, which are well known for their therapeutic properties. Nowadays, many polyphenol-containing products made from herbal extracts are marketed, claiming to have health-promoting effects. In this context, industrial hemp inflorescences may represent an innovative source of bioactive compounds to be used in nutraceutical formulations.

The aim of this work was to provide a comprehensive analysis of the polyphenolic fraction contained in polar extracts of four different commercial cultivars—Kompolti, Tiborszallasi, Antal, and Selected Carmagnola (CS)—of hemp inflorescence through spectrophotometric (total phenolic content [TPC] and DPPH assays) and spectrometry measurement (using ultra high-performance liquid chromatographyquadrupoleorbitrap high-resolution mass spectrometry or UHPLC-Q-Orbitrap HRMS).

Results highlighted a high content of cannflavin A and B in inflorescence samples, which appear to be cannabis-specific, with a mean value of 61.8 and 84.5 mg/kg, meaning a ten-to-hundred times increase compared to other parts of the plant. Among flavonols, quercetin-3-glucoside reached up to 285.9 mg/kg in the CS cultivar. Catechin and epicatechin were the most representative flavan-3-ols, with a mean concentration of 53.3 and 66.2 mg/kg, respectively, for all cultivars. TPC in inflorescence samples was quantified in the range of 10.51 to 52.58 mg GAE/g, and free radical-scavenging included in the range from 27.5 to 77.6 mmol trolox/kg. As such, C. sativa inflorescence could be considered as a potential novel source of polyphenols intended for nutraceutical formulations.

Keywords: Cannabis sativa L., polyphenols, UHPLC-Q-Orbitrap HRMS

Introduction

Cannabis sativa is an annual herbaceous plant of the Cannabaceae family, native to Central Asia but with a wide distribution over different geographical areas, facilitated by climate adaptation. This plant has long been cultivated due to its large variety of applications, from textile uses to food and feed.[1]

Industrial hemp, characterized by a low content of psychoactive cannabinoids, contains bioactive organic compounds that are known to have a wide range of important biological properties.[2] Polyphenols represent one of the most relevant compounds found in C. sativa, including the likes of prenylated flavonoids, phenol amides, and lignanamides, which are specific metabolites of this plant. They are known to play multifunctional roles in the defense mechanisms of the plant, especially through their activity as antioxidants, preventing the generation of reactive oxygen species (ROS).[3][4][5][6] In humans, polyphenols can display health-promoting effects based on the modulation of several enzymes, such us lipoxygenase and the superfamily of cytochrome P450, showing cardio- or chemoprotective activity, among others.[5][7]

For this reason, polyphenol-containing products have been increasingly marketed as food supplements and nutraceuticals, and, currently, a great variety of supplements claiming to enhance specific physiological functions are commercially available. Nutraceuticals consist of naturally-occurring active substances, which are concentrated and administered in the suitable pharmaceutical form to properly develop its pharmacological effect. Furthermore, when compared to traditional drugs, nutraceuticals appear to be generally safer, with higher bioavailability and fewer side effects.[8] The manufacturing of nutraceuticals requires isolated ingredients that have to be extracted and purified for latter uses. Since certain polyphenols naturally occur inside insoluble structures, such as vacuoles, obtention of pure compounds can become a complex process.[9] In addition, several studies reported a decrease in the bioavailability and bioaccessibility of pure polyphenols in comparison with the administration of plant extracts rich in polyphenols, which may be due to the existence of other active compounds which can establish synergistic functions with them.[10][11][12] Because of this, food supplements could be a valuable resource to consume polyphenol-containing products. They consist of extracts from herbals and botanicals than can be delivered as the same pharmaceutical forms as nutraceuticals. Some of the most prevalent plants used as a source of polyphenols are tea, coffee, apple, basil, and turmeric, among others, each one intended for specific polyphenols.[13][14][15]

Regarding C. sativa, recent studies have reported the high antioxidant potential of the plant—while also characterizing the major polyphenols, N-trans-caffeoyltyramine, and cannabisin A, B, and C—and have concluded that C. sativa would be a suitable source of polyphenols for nutraceutical or supplementation purposes.[3][4][16][17][18] Nevertheless, the most studied components of the plant are seeds, leaves, and sprouts, whereas there is still scarce literature regarding polyphenols in inflorescences. The polyphenolic profile of C. sativa is variable among the different parts of the plant, and since flowers represent an important reproductive organ, high levels of colored polyphenols are expected.[19]

Analysis of polyphenols in C. sativa samples has been previously performed using Fourier transform infrared spectroscopy(FTIR) with attenuated total reflectance (ATR)[4], as well as mass spectrometry (MS) coupled to both high-performance liquid chromatography (HPLC) and gas chromatography (GC).[18] High-resolution mass spectrometers, such as Orbitrap, have also been used coupled to ultra high-performance liquid chromatography (UHPLC) for the determination of polyphenols in vegetal matrices intended for nutraceutical purposes, including green tea and coffee.[17][20][21][22][23] This methodology offers higher sensitivity and specificity, allowing a precise quantification based on exact mass measurement. Given this, this study aimed to (i) evaluate the antioxidant activity and total polyphenol content in different chemotypes of commercial C. sativa inflorescences using in vitro assays, and (ii) establish the polyphenolic profile of those inflorescences through UHPLC coupled to high-resolution Orbitrap mass spectrometry (UHPLC-Q-Orbitrap HRMS), leading to the promotion of this innovative source of bioactive compounds for use in nutraceutical formulations or for their health-promoting properties.

Results and discussion

Identification of polyphenol compounds in C. sativa inflorescences though UHPLC-Q-Orbitrap HRMS

Identification of individual phenolic acids and flavonoids was conducted through UHPLC-Q-Orbitrap HRMS. By a combination of MS and tandem mass spectrometry (MS/MS) spectra, a total of 22 different polyphenolic compounds were identified from different samples of C. sativa inflorescences (see Figures S1 and S2, Supplementary materials). Table 1 shows all mass parameters, including adduct ion, theoretical and measured mass (m/z), accuracy, and sensitivity.

Table 1. Chromatographic and spectrometric optimized parameters, including retention time, adduct ion, theoretical and measured mass (m/z), accuracy, and sensitivity for the investigated analytes (n = 22)
Compound Retention Time (min) Chemical Formula Adduct Ion Theoretical Mass (m/z) Measured Mass (m/z) Accuracy (Δ mg/kg) LOD (mg/kg) LOQ (mg/kg)
Catechin 7.65 C15H14O6 [M − H]− 289.07176 289.07224 1.6605 0.0015 0.0046
Chlorogenic acid 8.13 C16H18O9 [M − H]− 353.08780 353.08798 0.5098 0.0012 0.0036
Caffeic acid 8.24 C9H8O4 [M − H]− 179.03498 179.03455 −2.4018 0.0007 0.0020
Epicatechin 8.51 C15H14O6 [M − H]− 289.07176 289.07196 0.6919 0.0014 0.0043
Luteolin-7-O-glucoside 9.23 C21H20O11 [M − H]− 447.09328 447.09366 0.8499 0.0008 0.0025
p-Coumaric acid 9.31 C9H8O3 [M − H]− 163.04001 163.03937 −3.9254 0.0006 0.0018
Caffeoyl tyramine 9.46 C17H17NO4 [M − H]− 298.10848 298.10910 2.0798 - -
Rutin 9.79 C27H30O16 [M − H]− 609.14611 609.14624 0.2134 0.0012 0.0035
Ferulic acid 9.88 C10H10O4 [M − H]− 193.05063 193.05016 −2.4346 0.0018 0.0054
Quercetin-3-glucoside 9.93 C20H20O12 [M − H]− 463.08820 463.08862 0.9070 0.0017 0.0052
Kaempferol-3-O-glucoside 10.36 C21H20O11 [M − H]− 447.09323 447.09360 0.8276 0.0008 0.0025
Apigenin-7-glucoside 10.36 C21H20O10 [M − H]− 431.09837 431.09836 −0.0232 0.0004 0.0013
Cannabisin A 10.54 C34H30N2O8 [M − H]− 593.19294 593.19281 −0.2192 - -
Quercetin 11.00 C15H10O7 [M − H]− 301.03538 301.03508 −0.9966 0.0021 0.0064
Luteolin 11.25 C15H10O6 [M − H]− 285.04046 285.04050 0.1403 0.0004 0.0012
Cannabisin B 11.41 C34H32N2O8 [M − H]− 595.20859 595.20709 −2.5201 - -
Kaempferol 11.60 C15H10O6 [M − H]− 285.04046 285.04086 1.4033 0.0005 0.0014
Naringenin 11.78 C15H12O5 [M − H]− 271.06120 271.06146 0.9592 0.0005 0.0015
Apigenin 11.85 C15H10O5 [M − H]− 269.04555 269.04572 0.6319 0.0004 0.0011
Cannabisin C 12.34 C35H34N2O8 [M − H]− 609.22424 609.22485 1.0013 - -
Cannabisin B 13.77 C21H20O6 [M − H]− 367.11871 367.11871 0.0000 - -
Cannabisin A 14.84 C26H28O6 [M − H]− 435.18131 435.18143 0.2757 - -

Experiments were achieved in ESI− mode. All of the studied analytes exhibited better fragmentation patterns producing the quasi-molecular ion [M − H]−. After full scan analysis, the accurate mass of the characteristic ions (precursor ions) was included in an inclusion list.

Full-scan HRMS data acquisition captures all sample data, enabling the identification of untargeted compounds and retrospective data analysis without the need to re-run samples. The confirmation of the structural characterization of untargeted analytes was based on the accurate mass measurement, elemental composition assignment, and MS/MS spectrum interpretation (see Figure S3, Supplementary materials).

Optimal separation of all the investigated analytes was carried out in a total run time of 20 minutes. The identification of structural isomers—catechin and epicatechin (m/z 289.07176); luteolin and kaempferol (m/z 285.04046)—was achieved by comparing the retention times of the peaks with those of standards (see Figure S2, Supplementary materials).

Sensitivity was evaluated by the limit of detection (LOD) and limit of quantification (LOQ). The LOD was defined as the minimum concentration, where the molecular ion could be identified with a mass error below 5 ppm, and the LOQ was set as the lowest concentration of the analyte that produced a chromatographic peak with a precision and accuracy <20%.

Quantitative determination of target analytes (n = 16) was performed using calibration curves at eight concentration levels. Each calibration curve was prepared in triplicate. We obtained regression coefficients >0.990. Quantification of compounds (n = 6) that had no standard to generate a curve was based on a representative standard of the same group.

Quantification of phenolic acids and flavonoids in C. sativa inflorescences

Phenolic acids

The predominant lignanamides (cannabisin A, B, and C) and phenolic amide (N-trans-caffeoyltyramine) found in hemp were evaluated in the assayed samples. Lignanamides and phenolic amides belong to the lignan class of compounds, and the basic unit consists of tyramine condensed with CoA-esters of p-coumaric, caffeic, and coniferic acid, as suggested by Flores-Sanchez.[24] Table 2 shows the results here obtained, expressed as the average content and concentration range of the phenolic acids and flavonoids detected in different hemp varieties. In the here analyzed samples, lignanamides represented from 0.02% to 0.47% of total polyphenols, in a concentration range between 0.10 and 2.2 mg/kg. Cannabisin A was found as the most commonly detected lignanamide, ranging from 0.01 (Tiborszallasi) up to 2.86 mg/kg (Kompolti), with a mean value of 1.0 mg/kg for all cultivars. Cannabisin B was found at levels three times lower with respect to Cannabisin A, ranging from 0.4 to 0.5 mg/kg. In addition, when cannabisin A was found at very low concentrations, cannabisin B was not detected. Cannabisin C showed to be the least relevant lignanamide, quantified between 0.003 and 0.38 mg/kg. Concerning the occurrence of lignanamides in C. sativa seed, available studies reported the highest concentration up to thousands of milligram per kilogram.[25] As far as phenol amides were concerned, N-trans-caffeoyltyramine was quantified at a concentration range from 0.1 (Kompolti) to 76.2 mg/kg (CS), with a mean value of 23.7 mg/kg for all cultivars. These levels are in line with the data reported on hemp seed.[25]

Lignanamides and phenolic amides are known to have a wide range of important biological properties, including antioxidant, anti-inflammatory, and antihyperlipidemic activities.[26][27][28][29][30] Apart from those, some important hydroxycinnamic acids (chlorogenic acid, caffeic acid, p-coumaric acid, and ferulic acid) were also evaluated in the here analyzed inflorescences samples. This important class of phenolic acids represented from 18.6% to 29.7% of total polyphenols found in samples. Among the hydroxycinnamic acids, p-coumaric acid was quantified at concentrations significantly greater (p < 0.05) than the other related compounds in all hemp cultivars analyzed, except in Kompolti samples. Moreover, the most common hydroxycinnamic acids found in Kompolti cultivar was ferulic acid, at an average content of 19.7 mg/kg (range from 3.0 to 35.6 mg/kg). Caffeic acid was detected in the lowest amount for all the analyzed cultivars. The CS hemp variety showed the highest concentration of hydroxycinnamic acids, compared with other varieties at an average content of 85.4 mg/kg. On the other hand, the observed concentration variability of phenolic acids may be a result of the influence of many biotic and abiotic factors that play an important role in the biosynthetic process of the studied compounds.[31]

Table 2. Polyphenol content in the analyzed Cannabis sativa samples (n = 22). Results are shown based on the different cultivar C. sativa inflorescences.
Sample Kompolti (n = 9) Tiborszallasi (n = 7) Antal (n = 7) Selected Carmagnola (CS) (n = 4)
Average (mg/kg) Range (mg/kg) Average (mg/kg) Range (mg/kg) Average (mg/kg) Range (mg/kg) Average (mg/kg) Range (mg/kg)
Phenolic acids
Hydroxycinnamic acids
Chlorogenic acid 12.0 2.2–28.2 9.0 2.0–20.5 10.1 3.5–23.6 15.0 11.1–22.1
Caffeic acid 1.4 0.4–2.8 4.3 1.2–6.4 3.3 1.6–5.6 3.9 2.9–4.6
p-Coumaric acid 13.1 0.5–28.0 37.3 15.5–84.7 28.2 5.1–105.8 41.1 18.1–93.0
Ferulic acid 19.7 3.0–35.6 26.0 14.7–35.3 18.9 4.7–30.6 25.5 20.2–33.4
   Totals 46.2 76.5 60.5 85.4
Lignanamides
Cannabisin A 1.1 0.1–2.9 0.01 0.005–0.01 1.5 1.2–1.8 1.6 0.09–2.85
Cannabisin B 0.40 0.02–1.1 - - 0.6 0.4–0.7 0.5 0.02–1.15
Cannabisin C 0.10 0.01–0.35 0.09 0.01–0.27 0.14 0.01–0.38 0.02 0.003–0.05
   Totals 1.60 0.1 1.7 2.12
Phenolic amides
N-trans-Caffeoyltyramine 17.6 0.1–59.2 15.3 4.7–30.6 25.8 5.7–44.9 36.1 5.3–76.2
   Totals 17.6 15.3 25.8 36.1
Flavonoids
Flavonols
Rutin 13.8 1.7–42.8 27.6 14.1–38.6 12.5 2.4–24.1 27.2 7.8–60.8
Quercetin-3-glucoside 37.6 2.2–87.1 94.3 23.2–269.8 55.8 10.0–172.1 126.1 58.9–285.9
Kaempferol-3-O-glucoside 6.5 0.1–15.3 15.4 4.2–44.5 9.9 1.6–29.6 26.6 12.6–46.6
Quercetin 12.1 6.2–24.6 15.8 6.3–26.0 10.3 6.5–16.8 28.8 8.2–58.5
Kaempferol 3.4 0.7–7.6 5.1 1.3–8.7 2.4 0.3–3.9 9.2 0.6–13.6
   Totals 73.4 158.2 90.9 217.8
Flavones
Cannflavin A 55.4 35.2–130.0 72.9 30.9–107.5 51.3 19.6–106.5 67.7 28.4–118.6
Cannflavin B 55.4 30.2–110.6 86.7 26.2–215.5 98.8 32.9–182.5 97.2 11.9–154.4
Luteolin-7-O-glucoside 9.4 3.3–19.0 13.4 2.1–42.8 13.9 8.8–17.7 22.2 1.1–52.6
Apigenin-7-O-glucoside 1.9 0.1–5.6 2.5 0.1–6.7 1.1 0.2–3.0 2.6 0.8–6.5
Luteolin 12.2 0.8–23.5 19.0 6.3–38.2 8.6 0.9–14.3 25.7 16.9–38.2
Apigenin 5.4 2.1–11.7 6.5 2.4–16.3 4.1 0.4–8.5 8.7 6.3–13.9
   Totals 139.7 201.0 27.7 59.2
Flavan-3-ols
Catechin 85.3 0.1–334.0 16.8 2.6–43.4 40.9 1.9–155.2 70.1 39.2–115.2
Epicatechin 30.7 1.6–88.4 64.2 10.6–183.7 63.2 11.1–156.4 11.1–156.4 21.5–194.6
   Totals 116.0 81.0 104.1 177.0
Flavanone
Naringenin 0.50 0.01–1.10 0.5 0.3–1.0 0.9 0.5–2.0 1.0 0.7–1.8
   Totals 0.50 0.5 0.9 1.0
   Total bioactive 377.9 532.6 461.7 743.5

Flavonoids

Flavonoids are plant-derived phytochemicals that accounted for over 80% of the phenolic components in the assayed samples. Flavonoids—namely flavones, flavanones, flavonols, and flavan-3-ols, including their main aglycones, glycosides, and methylated derivatives—have been quantified in the assayed samples, as shown in Table 2, above. Flavones represented the highest proportion of flavonoids found in analyzed samples, ranging from 30.1% (CS) to 35.4% (Kompolti) of total polyphenols, cannflavin A and cannflavin B being the most commonly detected flavones, with a mean value of 61.8 and 84.5 mg/kg, respectively. These levels found in inflorescences showed a ten-to-hundred-fold increase when compared to leaf-based samples previously analyzed by Pollastro et al.[5], who reported cannflavin A and B at 6 and 0.8 mg/kg, respectively. Cannflavins A and B, methylated isoprenoid flavones, appear to be Cannabis-specific and are known to exert a potent anti-inflammatory activity.[32] In this context, Werz et al.[33] reported that cannflavin A and B were able to inhibit the production of pro-inflammatory prostanoids and leukotrienes in in vitro assays. Moreover, Barrett et al. concluded that cannflavins A and B promoted the inhibition of PGE2 in human cells up to thirty times in relation to aspirin.[34][35] In addition, cannflavin A showed a neuroprotective effect against amyloid β-mediated neurotoxicity in PC12 cells.[36] As shown in Table 2, among flavonols, quercetin-3-glucoside was quantified at concentrations significantly greater (p < 0.05) than the other related compounds, ranging from 2.2 (Kompolti) to 285.9 mg/kg (CS), with a mean value of 78.4 mg/kg. On the other hand, flavan-3-ols, mainly represented by catechin and epicatechin, were detected at mean values of 53.3 and 66.2 mg/kg for all cultivars, respectively. Regarding epicatechin, the CS cultivar showed a two-fold increase compared with other cultivars assayed. Of the minor flavonoids, the compound naringenin was detected.

Overall, the data clearly indicate that the CS cultivar showed the highest concentrations of the investigated polyphenols (743.5 mg/kg) compared to the other cultivars.

Industrial hemp inflorescence may represent an innovative source of bioactive compounds—such as a high content of cannflavin A and B, which appear to be Cannabis-specific—to be used in nutraceutical formulations.

Total phenolic contents and antioxidant activity of C. sativa extracts

Total phenolic contents of C. sativa extracts

The amounts of total phenolic contents of C. sativa extracts were examined. The results are summarized in Table 3. Total phenolics, flavonoids, and phenolic acids ranged from 10.510 to 48.875 mg GAE/g for the different cultivars of C. sativa. Among the studied cultivars, the highest total phenol content resulted from the CS cultivar, with a content of 41.517 mg GAE/g, and the lowest amount emerges for the Kompolti variety (10.510 mg GAE/g). Total polyphenol content quantified in analyzed samples was similar to those recently reported by Vonapartis et al.[37], who found hemp seed samples (n = 10) to be in a concentration range from 13.68 to 51.60 mg GAE/g.

Table 3. Total polyphenol compounds expressed as mg GAE/g and antioxidant activity expressed as mmol trolox/kg of C. sativa extracts; GAE: gallic acid equivalents, TPC: total phenolic content, DPPH: 2,2-diphenyl-1-picrylhydrazyl free-radical scavenging, trolox: equivalent antioxidant capacity (TEAC)
Cultivar TPC DPPH
Average (mg GAE/g) Range (mg GAE/g) Average (mmol trolox/kg) Range (mmol trolox/kg)
Kompolti (n = 9) 26.2 ± 0.5 10.5–47.2 46.7 ± 0.7 36.6–55.0
Tiborszallasi (n = 7) 29.9 ± 0.4 21.9–42.9 61.3 ± 0.9 50.8–72.7
Antal (n = 7) 30.7 ± 0.5 17.0–48.9 45.9 ± 0.4 27.5–67.5
Selected Carmagnola (CS) (n=4) 33.2 ± 0.5 26.3–41.5 63.6 ± 0.9 59.1–77.6

C. sativa is a remarkable plant widely investigated by several researchers, given its rich fount of valuable natural components. Apart from cannabinoid production, the C. sativa plant is also able to synthesize non-cannabinoid secondary metabolites possessing beneficial effects for human health.[1] [38] A summary of the available surveys on total polyphenol content of the different parts of C. sativa is shown in Table 4. In spite of several experiments being performed on this plant[3][4][17][38][39][40][41][42][43], the study of inflorescences remains low, making the comparison of results difficult. Recently, Ferrante et al.[42] investigated the total phenolic content in the water fraction extracted from aerial flowers of the CS cultivar, reporting a lower value compared to the results here obtained.

Table 4. Recent surveys reporting the total phenolic content (mg GAE/g) in different parts of C. sativa samples; TPC: total phenolic content
Part of Plant TPC (mg GAE/g) References
Leaves 0.09–0.56 [3]
Seeds 0.77–51.6 [4][17][37][39]
Oil 0.02–2.67 [4][39][40]
Flour 0.74–1.71 [4][39][43]
Sprouts 6.16 [17]
Aerial parts 5.85–17.05 [41]
Flowers 4.7–8.1 [42]
Inflorescences 10.51–52.58 Current work

With respect to other parts of the same plant, the given TPC in C. sativa inflorescences was significantly (p < 0.05) higher than the reported contents, resulting in the highest potential fount of phenols.

The correlation between TPC and UHPLC-Q-Orbitrap HRMS findings was evaluated through Pearson’s correlation coefficient (PCC). The results showed a strong positive correlation (PCC = 0.892). Scientific evidence suggests that using some combination of assays is the best approach to properly characterize the phenolic composition.[44]

Antioxidant activity of C. sativa extracts

The results of antioxidant activity evaluated through DPPH free radical-scavenging activity are tabulated in the prior Table 3 and expressed as mmol trolox/kg. A calibration curve of inhibition, built with trolox, was employed as a positive control of the assay. Antioxidant activity was included in the range of 27.532 to 77.578 mmol trolox/kg (average 54.401 mmol trolox/kg) for the different cultivars of C. sativa. In this case, the highest antioxidant capability was found in the CS variety (p < 0.05), with a content of 77.578 mmol trolox/kg, while the lowest amount was found in the Antal variety (27.532 mmol trolox/kg).

Antioxidant capacity is largely used as a parameter to characterize bioactive components from foods or medicinal plants. The assessment of polyphenol content in inflorescences of C. sativa extract is useful to define their potential antioxidant value and their free radical scavenging capacity. Increasing evidence reports that antioxidants may protect cell constituents against oxidative damage and shrink the risk of various diseases connected to oxidative stress.[45]

The synergy effect or interaction of phenolic compounds in food products contribute, for the most part, to the overall antioxidant capacity, despite bioactivity decoupled from phenolic compounds being reported in the literature.[46][47]

Several researchers have studied the bioactivity of various parts of C. sativa[3][4][17][39][40][41][42][43], and, on the whole, the extracts were found to be rich sources of bioactive compounds. Regarding antioxidant capability, Smeriglio et al.[40] reported content of 146.7 mmol trolox/100 g in seed oil from the Finola cultivar and lower amounts for the lipophilic fraction (0.125 mmol trolox/100 g) and hydrophilic fractions (0.038 mmol trolox/100 g). Mikulek et al.[43] have reported an amount of 158 mmol trolox/100 kg in flour.

Currently, scarce data on the antioxidant activity of C. sativa inflorescence are available in the literature. Compared to other researchers' findings that have reported the antioxidant activity of the different parts of C. sativa, these inflorescence analyses have shown the highest potentials.

Materials and methods

Reagents and materials

A total of twenty-seven samples of industrial C. sativa female inflorescences of different varieties, including Kompolti (n = 9), Tiborszallasi (n = 7), Antal (n = 7), and Selected Carmagnola (CS) (n = 4) were provided by several hemp farmers located in Italy. All inflorescences were harvested in October 2019 and fulfilled the requirements of European Commission regulation (No 809/2014)[48] regarding their psychoactive cannabinoids content. The samples were dried at 36 °C using a forced-air laboratory oven until the sample moisture reached a level from 8% to 12%. The samples were milled into powder using a laboratory mill (particle size 200 µm) and then stored at 4 °C until analysis.

The polyphenol standards (purity >98%) were purchased from Sigma Aldrich (Milan, Italy), and included: chlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid (Hydroxycinnamic Acids); rutin, quercetin-3-glucoside, kaempferol-3-O-glucoside, quercetin, kaempferol (Flavonol); luteolin-7-O-glucoside, apigenin-7-O-glucoside, luteolin, apigenin (Flavones); catechin, epicatechin (Flavan-3-ols); and naringenin (Flavanone).

Due to the lack of analytical standards, the identification of polyphenols (n = 6)—including cannabisin A, cannabisin B, cannabisin C (Lignanamide), cannflavin A, cannflavin B (Flavanone) and N-trans-caffeoyltyramine (Phenolic amides)—was carried out by post-target screening.

Methanol (MeOH) and water (LC-MS grade) were acquired from Merk (Darmstadt, Germany), and formic acid (mass spectrometry grade) was purchased from Fluka (Milan, Italy).

Polyphenol extraction

Extraction was carried out according to the procedure described by Calzolari et al.[49], with some modifications. Briefly, 100 mg of sample was suspended in 15 mL of methanol, the mixture was vortexed intensively for three minutes and sonicated in the dark, at 4 °C, for 30 minutes. Then, the mixture was centrifuged at 5000× g at 4 °C for 10 minutes. The supernatants were pooled, filtered through 0.2 μm syringe filters (26 mm, RC membrane, Phenomenex, Castel Maggiore, Italy), and an aliquot introduced into a chromatography vial.

Determination of total phenolic content (TPC)

Total phenolic content was performed according to the Folin–Ciocalteu method[50], with slight modifications. Briefly, 125 μL of extract sample was diluted in 500 μL of deionized water, then 125 μL of the Folin–Ciocalteu reagent was added to the mixture, followed by six minutes of incubation at room temperature. Afterward, 1.25 mL of 7.5% of sodium carbonate solution and 1 mL of deionized water were added in the mixture. The absorbance at 760 nm after 90 minutes of incubation in the dark was measured. The TPC of inflorescence samples was expressed as mg of gallic acid equivalents (GAE)/g of sample.

Determination of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging

The radical-scavenging activity of the sample extract was determined using the method suggested by Brand-Williams et al.[51], with some modifications. Briefly, to obtain the DPPH radical working solution, the DPPH standard (4 mg in 10 mL) was diluted with methanol until the absorbance value reached 0.90 (±0.02) at 517 nm. Then, 200 μL of sample extract was added to 1 mL of DPPH radical working solution. The mixture was shaken vigorously, and then the decrease absorbance after 10 minutes at 517 nm was measured. The results were expressed as mmol trolox equivalents (TE)/kg of the sample.

UHPLC-Q-Orbitrap HRMS analysis

The polyphenolic profile was analyzed by an ultra high-performance liquid chromatography system (UHPLC, Dionex UltiMate 3000, Thermo Fisher Scientific, Waltham, MA, USA) equipped with a degassing system, a Quaternary UHPLC pump working at 1250 bar, and an autosampler device. Chromatographic separation of polyphenols was performed with a thermostated (T = 25 °C) Kinetex 2.6 µm Biphenyl (100 × 2.1 mm, Phenomenex) column. The injection volume was 2 μL. The mobile phase consisted of a binary solution: water (phase A) and methanol (phase B), both mobile phases contained 0.1% of formic acid. A gradient elution program was applied as follows: an initial 5% B, increased to 30% B in 1.3 minutes, and a new to 100% B in eight minutes. The gradient was held for three minutes at 100% B and reduced to 5% B in two minutes. The flow rate was 0.2 mL/min. Afterward, the gradient switched back to 5% in two minutes, and another two minutes for column re-equilibration at 5%.

The UHPLC system was coupled to a Q-Exactive Orbitrap mass spectrometer (UHPLC, Thermo Fischer Scientific, Waltham, MA, USA). An ESI source (Thermo Fisher Scientific, Waltham, MA, USA) was operated in negative ion mode (ESI-), setting two scan events (Full ion MS and All ion fragmentation, AIF) for all compounds of interest. Full scan data were acquired at a resolving power of 35,000 FWHM (full width at half maximum). Ion source parameters were spray voltage 2.8 kV (negative mode), capillary temperature 310 °C, S-lens RF level 50, sheath gas pressure (N2 > 95%) 35, auxiliary gas (N2 > 95%) 10, and auxiliary gas heater temperature 350 °C. The value for the automatic gain control (AGC) target was set at 3 × 106, a scan range of m/z 90 to 1000 was chosen, and the injection time was set to 200 ms. The scan-rate was set at two scans/s. Data analysis and processing were performed using Xcalibur software, v. 3.1.66.10.

For the scan event of AIF, the parameters were set as follows: mass resolving power of 17,500 FWHM at 200 ms; scan time = 0.10 seconds. The collision energy was varied in the range of 10 to 45 eV to obtain representative product ion spectra. Data processing was performed by the Quan/Qual Browser Xcalibur software, v. 3.1.66.10 (Xcalibur, Thermo Fisher Scientific, Waltham, MA, USA). Detection was based on calculated exact mass with a mass error below 5 ppm and on the retention time of the molecular ion; while regarding the fragments on the intensity threshold of 1000 and a mass tolerance of 5 ppm. Quantitative results were obtained working in scan mode with HRMS exploiting the high selectivity achieved in full-scan mode, whereas MS/HRMS information was used for confirmatory purposes.

Statistics and data analysis

Values were expressed as the average values and concentration range of triplicate measurements. The differences between average values were evaluated by using Tukey’s test at the level of significance p < 0.05. Statistical analysis was performed using STATA 12 (STATA corp LP, College Station, TX, USA).

Conclusions

Even if studies regarding the beneficial effects of hemp seeds, oils, and leaves are numerous, and research on C. sativa extract is constantly in progress, there are few references concerning the biological activities and the potential health benefits of C. sativa inflorescence. A comprehensive analysis of the bioactivity for Kompolti, Tiborszallasi, Antal, and Selected Carmagnola (CS) cultivars of C. sativa inflorescences and polyphenol characterization through UHPLC-Q-Orbitrap spectrometry measurement were carried out in this research work for the first time.

A comparison of the studied cultivars showed that the CS cultivar had the highest investigated polyphenol amount (sum average of 743.5 mg/kg) and TPC content (33.2 ± 0.5 mg GAE/g), as well as free radical-scavenging activity (63.6 ± 0.9 mmol trolox/kg); thus, this appears to be the most promising cultivar. In spite of the renovated interest for this cultivar, data about the correlation on bioactivity and cultivar are still fragmentary.

Our results highlighted the possibility of also using this part of the plant, which represents a valuable source of natural antioxidants and a rich fount of polyphenols, including cannflavins, which represent bioactive compounds not common in other typical plants. It is, therefore, desirable to continue to expand the understanding of this actual topic to estimate their efficacy for future applications for nutraceutical purposes.

Supplementary materials

Supplementary file 1: This PDF file contains Supplementary Figures S1–S3.

Acknowledgements

Author contributions

A.R. and Y.R.C. conceived and designed the experiments; L.I. performed the experiments; G.G. and A.G. analyzed the data, L.I., L.C., A.N. wrote the paper and Y.R.C. review and editing. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of interest

The authors declare no conflicts of interest.

References

  1. 1.0 1.1 Andre, C.M.; Hausman, J.F.; Guerriero, G. (2016). "Cannabis sativa: The Plant of the Thousand and One Molecules". Frontiers in Plant Science 7: 19. doi:10.3389/fpls.2016.00019. PMC PMC4740396. PMID 26870049. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740396. 
  2. Cushnie, T.P.T.; Lamb, A.J. (2005). "Antimicrobial activity of flavonoids". International Journal of Antimicrobial Agents 26 (5): 343–56. doi:10.1016/j.ijantimicag.2005.09.002. PMC PMC7127073. PMID 16323269. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127073. 
  3. 3.0 3.1 3.2 3.3 3.4 Mkpenie, V.N.; Essien, E.E.; Udoh, I.I. (2012). "Effect of extraction conditions on total polyphenol contents, antioxidant and antimicrobial activities of Cannabis sativa L.". Electronic Journal of Environmental, Agricultural and Food Chemistry 11 (4): 300–307. https://www.researchgate.net/publication/260824507_Effect_of_extraction_conditions_on_total_polyphenol_contents_antioxidant_and_antimicrobial_activities_of_Cannabis_sativa_L. 
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Siano, F.; Moccia, S.; Picariello, G. et al. (2019). "Comparative Study of Chemical, Biochemical Characteristic and ATR-FTIR Analysis of Seeds, Oil and Flour of the Edible Fedora Cultivar Hemp (Cannabis sativa L.)". Molecules 24 (1): 83. doi:10.3390/molecules24010083. 
  5. 5.0 5.1 5.2 Pollastro, F.; Minassi, A.; Fresu, L.G. (2019). "Cannabis Phenolics and their Bioactivities". Current Medicinal Chemistry 25 (10): 1160–1185. doi:10.2174/0929867324666170810164636. 
  6. Mandal, S.M.; Chakraporty, D.; Dey, S. (2010). "Phenolic acids act as signaling molecules in plant-microbe symbioses". Plant Signaling & Behavior 5 (4): 359–68. doi:10.4161/psb.5.4.10871. 
  7. Castaldo, L.; Narváez, A.; Izzo, L. et al. (2019). "Red Wine Consumption and Cardiovascular Health". Molecules 24 (19): 3626. doi:10.3390/molecules24193626. PMC PMC6804046. PMID 31597344. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804046. 
  8. Santini, A.; Tenore, G.C.; Novellino, E. (2017). "Nutraceuticals: A paradigm of proactive medicine". European Journal of Pharmaceutical Sciences 96: 53–61. doi:10.1016/j.ejps.2016.09.003. PMID 27613382. 
  9. Kelly, N.P.; Kelly, A.L.; O'Mahony, J.A. (2019). "Strategies for enrichment and purification of polyphenols from fruit-based materials". Trends in Food Science & Technology 83: 248–58. doi:10.1016/j.tifs.2018.11.010. 
  10. Lin, J.; Teo, L.M.; Leong, L.P. et al. (2016). "In vitro bioaccessibility and bioavailability of quercetin from the quercetin-fortified bread products with reduced glycemic potential". Food Chemistry 286: 629–35. doi:10.1016/j.foodchem.2019.01.199. PMID 30827656. 
  11. Gómez-Juaristi, M.; Martínez-López, S.; Sarria, B. et al. (2018). "Bioavailability of hydroxycinnamates in an instant green/roasted coffee blend in humans. Identification of novel colonic metabolites". Food & Function 9 (1): 331-343. doi:10.1039/c7fo01553d. PMID 29177345. 
  12. Shukla, M.; Jaiswal, S.; Sharma, A. et al. (2017). "A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin". Drug Development and Industrial Pharmacy 43 (5): 847–61. doi:10.1080/03639045.2016.1239732. PMID 27648633. 
  13. Abbas, M.; Saeed, F.; Anjum, F.M. et al. (2017). "Natural polyphenols: An overview". International Journal of Food Properties 20 (8): 1689–99. doi:10.1080/10942912.2016.1220393. 
  14. Tenore, G.C.; Campiglia, P.; Ciampaglia, R. et al. (2017). "Antioxidant and antimicrobial properties of traditional green and purple "Napoletano" basil cultivars (Ocimum basilicum L.) from Campania region (Italy)". Natural Product Research 31 (17): 2067–71. doi:10.1080/14786419.2016.1269103. PMID 28025898. 
  15. Castaldo, L.; Graziani, G.; Gaspari, A. et al. (2018). "Study of the Chemical Components, Bioactivity and Antifungal Properties of the Coffee Husk". Journal of Food Research 7 (4): 43–54. doi:10.5539/jfr.v7n4p43. 
  16. Fathordoobady, F.; Singh, A.; Kitts, D.D. et al. (2019). "Hemp (Cannabis sativa L.) Extract: Anti-Microbial Properties, Methods of Extraction, and Potential Oral Delivery". Food Reviews International 35 (7): 664–84. doi:10.1080/87559129.2019.1600539. 
  17. 17.0 17.1 17.2 17.3 17.4 17.5 Frassinetti, S.; Moccia, E.; Caltavuturo, L. et al. (2018). "Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts". Food Chemistry 262: 56–66. doi:10.1016/j.foodchem.2018.04.078. PMID 29751921. 
  18. 18.0 18.1 Nagy, D.U.; Cianfaglione, K.; Maggi, F. et al. (2019). "Chemical Characterization of Leaves, Male and Female Flowers from Spontaneous Cannabis (Cannabis sativa L.) Growing in Hungary". Chemistry and Biodiversity 16 (3): e1800562. doi:10.1002/cbdv.201800562. PMID 30548994. 
  19. Piccolella, S.; Crescente, G.; Candela, L. et al. (2019). "Nutraceutical polyphenols: New analytical challenges and opportunities". Journal of Pharmaceutical and Biomedical Analysis 175: 112774. doi:10.1016/j.jpba.2019.07.022. PMID 31336288. 
  20. López-Gutiérrez, N.; Romero-González, R.; Plaza-Bolaños, P. et al. (2015). "Identification and quantification of phytochemicals in nutraceutical products from green tea by UHPLC-Orbitrap-MS". Food Chemistry 173: 607–18. doi:10.1016/j.foodchem.2014.10.092. PMID 25466066. 
  21. López-Gutiérrez, N.; Romero-González, R.; Vidal, J.L.M. et al. (2016). "Determination of polyphenols in grape-based nutraceutical products using high resolution mass spectrometry". LWT - Food Science and Technology 71: 249–59. doi:10.1016/j.lwt.2016.03.037. 
  22. Koprivica, M.R.; Trifković, J.Đ.; Dramićanin, A.M. et al. (2018). "Determination of the phenolic profile of peach (Prunus persica L.) kernels using UHPLC–LTQ OrbiTrap MS/MS technique". European Food Research and Technology 244: 2051–64. doi:10.1007/s00217-018-3116-2. 
  23. Rodríguez-Carrasco, Y.; Gaspari, A.; Craziani, G. et al. (2018). "Fast analysis of polyphenols and alkaloids in cocoa-based products by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS)". Food Research International 111: 229-236. doi:10.1016/j.foodres.2018.05.032. PMID 30007681. 
  24. Flores-Sanchez, I.J.; Verpoorte, R. (2008). "Secondary metabolism in cannabis". Phytochemistry Reviews 7: 615–39. doi:10.1007/s11101-008-9094-4. 
  25. 25.0 25.1 Irakli, M.; Tsaliki, E.; Kalivas, A. et al. (2019). "Effect οf Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds". Antioxidants 8 (10): 491. doi:10.3390/antiox8100491. PMC PMC6826498. PMID 31627349. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826498. 
  26. Yan, X.; Tang, J.; Passos, C.dP. et al. (2015). "Characterization of Lignanamides from Hemp (Cannabis sativa L.) Seed and Their Antioxidant and Acetylcholinesterase Inhibitory Activities". Journal of Agricultural and Food Chemistry 63 (49): 10611–9. doi:10.1021/acs.jafc.5b05282. PMID 26585089. 
  27. Chen, H.; Li, Y.-J.; Sun, Y.-J. et al. (2017). "Lignanamides with potent antihyperlipidemic activities from the root bark of Lycium chinense". Fitoterapia 122: 119–25. doi:10.1016/j.fitote.2017.09.004. PMID 28890177. 
  28. Zhang, J.-X.; Guan, S.-H.; Feng, R.-H. et al. (2013). "Neolignanamides, lignanamides, and other phenolic compounds from the root bark of Lycium chinense". Journal of Natural Products 76 (1): 51-8. doi:10.1021/np300655y. PMID 23282106. 
  29. Sun, J.; Gu, Y.-F.; Su, X.-Q. et al. (2014). "Anti-inflammatory lignanamides from the roots of Solanum melongena L.". Fitoterapia 98: 110–6. doi:10.1016/j.fitote.2014.07.012. PMID 25068200. 
  30. Gao, K.; Ma, D.; Cheng, Y. et al. (2015). "Three New Dimers and Two Monomers of Phenolic Amides from the Fruits of Lycium barbarum and Their Antioxidant Activities". Journal of Agricultural and Food Chemistry 63 (4): 1067–75. doi:10.1021/jf5049222. PMID 25603493. 
  31. Biesiada, A.; Tomczak, A. (2012). "Biotic and Abiotic Factors Affecting the Content of the Chosen Antioxidant Compounds in Vegetables". Vegetable Crops Research Bulletin 76 (2012): 55–78. doi:10.2478/v10032-012-0004-3. 
  32. Rea, K.A.; Casaretto, J.A.; Al-Abdul-Wahid, M.S. et al. (2019). "Biosynthesis of cannflavins A and B from Cannabis sativa L". Phytochemistry 164: 162–71. doi:10.1016/j.phytochem.2019.05.009. PMID 31151063. 
  33. Werz, O.; Seegers, J.; Schaible, A.M. et al. (2014). "Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase". PharmaNutrition 2 (3): 53–60. doi:10.1016/j.phanu.2014.05.001. 
  34. Barrett, M.L.; Gordon, D.; Evans, F.J. et al. (1985). "Isolation from Cannabis sativa L. of cannflavin--a novel inhibitor of prostaglandin production". Biochemical Pharmacology 34 (11): 2019–24. doi:10.1016/0006-2952(85)90325-9. PMID 3859295. 
  35. Barrett, M.L.; Scutt, A.M.; Evans, F.J. (1986). "Cannflavin A and B, prenylated flavones from Cannabis sativa L.". Experientia 42 (4): 452–3. doi:10.1007/BF02118655. PMID 3754224. 
  36. Eggers, C.; Fujitani, M.; Kato, R. et al. (2019). "Novel cannabis flavonoid, cannflavin A displays both a hormetic and neuroprotective profile against amyloid β-mediated neurotoxicity in PC12 cells: Comparison with geranylated flavonoids, mimulone and diplacone". Biochemical Pharmacology 169: 113609. doi:10.1016/j.bcp.2019.08.011. PMID 31437460. 
  37. 37.0 37.1 Vonapartis, E.; Aubin, M.-P.; Seguin, P. et al. (2015). "Seed composition of ten industrial hemp cultivars approved for production in Canada". Journal of Food Composition and Analysis 39: 8–12. doi:10.1016/j.jfca.2014.11.004. 
  38. Gonçalves, J.; Rosado, T.; Soares, S. et al. (2019). "Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination". Medicines 6 (1): 31. doi:10.3390/medicines6010031. PMC PMC6473697. PMID 30813390. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473697. 
  39. 39.0 39.1 39.2 39.3 39.4 Moccia, S.; Siano, F.; Russo, G.L. et al. (2020). "Antiproliferative and antioxidant effect of polar hemp extracts (Cannabis sativa L., Fedora cv.) in human colorectal cell lines". International Journal of Food Sciences and Nutrition 71 (4): 410–23. doi:10.1080/09637486.2019.1666804. PMID 31544542. 
  40. 40.0 40.1 40.2 40.3 Smeriglio, A.; Galati, E.M.; Monforte, M.T. et al. (2016). "Polyphenolic Compounds and Antioxidant Activity of Cold-Pressed Seed Oil from Finola Cultivar of Cannabis sativa L.". Phytotherapy Research 30 (8): 1298-307. doi:10.1002/ptr.5623. PMID 27076277. 
  41. 41.0 41.1 41.2 Zorica, D.; Senka. V.; Jelena, V. et al. (2018). "Effect of extraction solvent on total polyphenols content and antioxidant activity of Cannabis sativa L.". Lekovite sirovine 38: 17–21. doi:10.5937/leksir1838017D. 
  42. 42.0 42.1 42.2 42.3 Ferrante, C.; Recinella, L.; Ronci, M. et al. (2019). "Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity". Food and Chemical Toxicology 125: 452–61. doi:10.1016/j.fct.2019.01.035. PMID 30711720. 
  43. 43.0 43.1 43.2 43.3 Mikulec, A.; Kowalski, S.; Sabat, R. et al. (2019). "Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread". LWT 102: 164-172. doi:10.1016/j.lwt.2018.12.028. 
  44. Da Beer, D.; Harbertson, J.F.; Kilmartin, P.A. et al. (2004). "Phenolics: A Comparison of Diverse Analytical Methods". American Journal of Enology and Viticulture 55: 389–400. https://www.ajevonline.org/content/55/4/389. 
  45. Olszowy, M. (2019). "What is responsible for antioxidant properties of polyphenolic compounds from plants?". Plant Physiology and Biochemistry 144: 135-143. doi:10.1016/j.plaphy.2019.09.039. PMID 31563754. 
  46. Heleno, S.A.; Marins, A.; Queiroz, M.J.R.P. et al. (2015). "Bioactivity of phenolic acids: Metabolites versus parent compounds: A review". Food Chemistry 173: 501–13. doi:10.1016/j.foodchem.2014.10.057. PMID 25466052. 
  47. Burri, S.C.M.; Ekholm, A.; Håkansson, Å. et al. (2017). "Antioxidant capacity and major phenol compounds of horticultural plant materials not usually used". Journal of Functional Foods 38 (Pt A): 119–27. doi:10.1016/j.jff.2017.09.003. PMC PMC5666123. PMID 29129982. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666123. 
  48. European Commission (31 July 2014). "Commission Implementing Regulation (EU) No 809/2014 of 17 July 2014 laying down rules for the application of Regulation (EU) No 1306/2013 of the European Parliament and of the Council with regard to the integrated administration and control system, rural development measures and cross compliance". EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32014R0809. 
  49. Calzolari, D.; Magagnini, G.; Lucini, L. et al. (2017). "High added-value compounds from Cannabis threshing residues". Industrial Crops and Products 108: 558–63. doi:10.1016/j.indcrop.2017.06.063. 
  50. Ainsworth, E.A.; Gillespie, K.M. (2007). "Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent". Nature Protocols 2 (4): 875–7. doi:10.1038/nprot.2007.102. PMID 17446889. 
  51. Brand-Williams, W.; Cuvelier, M.E.; Berset, C. (1995). "Use of a free radical method to evaluate antioxidant activity". LWT 28 (1): 25–30. doi:10.1016/S0023-6438(95)80008-5. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. Some grammar and punctuation was cleaned up to improve readability. In some cases important information was missing from the references, and that information was added.