Journal:Cannabis contaminants limit pharmacological use of cannabidiol

From LIMSWiki
Revision as of 20:07, 13 September 2020 by Shawndouglas (talk | contribs) (Saving and adding more.)
Jump to navigationJump to search
Full article title Cannabis contaminants limit pharmacological use of cannabidiol
Journal Frontiers in Pharmacology
Author(s) Montoya, Zackary; Conroy, Matthieu; Vanden Heuvel, Brian D.; Pauli, Christopher S.; Park, Sang-Hyuck
Author affiliation(s) Colorado State University–Pueblo
Primary contact Email: sanghyuck dot park at csupueblo dot edu
Editors Khan, Tanveer A.
Year published 2020
Volume and issue 11
Article # 571832
DOI 10.3389/fphar.2020.571832
ISSN 1663-9812
Distribution license Creative Commons Attribution 4.0 International
Website https://www.frontiersin.org/articles/10.3389/fphar.2020.571832/full
Download https://www.frontiersin.org/articles/10.3389/fphar.2020.571832/pdf (PDF)

Abstract

For nearly a century, cannabis has been stigmatized and criminalized across the globe, but in recent years, there has been a growing interest in cannabis due to the therapeutic potential of phytocannabinoids. With this emerging interest in cannabis, concerns have arisen about the possible contaminations of hemp with pesticides, heavy metals, microbial pathogens, and carcinogenic compounds during the cultivation, manufacturing, and packaging processes. This is of particular concern for those turning to cannabis for medicinal purposes, especially those with compromised immune systems. This review aims to provide types of contaminants and examples of cannabis contamination using case studies that elucidate the medical consequences consumers risk when using adulterated cannabis products. Thus, it is imperative to develop universal standards for cultivation and testing of products to protect those who consume cannabis.

Keywords: cannabis, cannabidiol, cannabis contaminants, hemp, phytocannabinoids

Introduction

Phytocannabinoids have garnered global attention recently due to the therapeutic potentials in Parkinson’s disease (Chagas et al., 2014), schizophrenia (McGuire et al., 2018), cancers (McGuire et al., 2018; Jeong et al., 2019; Sharafi et al., 2019), pain, anxiety, depression, and other neurological disorders (Marchetti, 2013), as well as the Food and Drug Administration (FDA) approval of Epidiolex for Dravet syndrome (Kaplan et al., 2017) and Lennox-Gauss Syndrome (Pauli et al., 2020). As of 2019, a total of 33 states, the District of Columbia, Guam, Puerto Rico, and the U.S Virgin Islands have approved cannabis for medicinal purposes, and 21 states are considering bills that would decriminalize it under legislative action. With recent legalization in Canada in 2019, more countries are beginning to question the rationale behind criminalizing cannabis (Habibi and Hoffman, 2018). As interest in cannabis expands around the globe, many issues have arisen concerning the lack of cultivation standards and overall quality control of cannabis products. Recently the United States Pharmacopeia (USP) formed a Cannabis Expert Panel, which has evaluated specifications necessary to define key cannabis quality attributes, including limits for contaminants such as pesticide residues, microbial pathogen levels, mycotoxins, and elemental contaminants, based on toxicological considerations and aligned with the existing USP procedures for general tests and assays (Sarma et al., 2020). Aside from inaccuracy in labeling phytocannabinoid content, it has been reported that cannabis and derived products are often contaminated by microbes, heavy metals, pesticides, carcinogens, and debris, which must be addressed to ensure the safety of consumers (Table 1). (Mcpartland and Mckernan, 2017; Dryburgh et al., 2018)

References

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. Some grammar and punctuation was cleaned up to improve readability. In some cases important information was missing from the references, and that information was added. The original article lists references in alphabetical order; this version lists them in order of appearance, by design.