Journal:The need for informatics to support forensic pathology and death investigation

From LIMSWiki
Revision as of 22:27, 27 January 2016 by Shawndouglas (talk | contribs) (Loaded first part of article. Saving and adding more.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
Full article title The need for informatics to support forensic pathology and death investigation
Journal Journal of Pathology Informatics
Author(s) Levy, Bruce
Author affiliation(s) University of Illinois at Chicago
Primary contact Email: http://www.jpathinformatics.org/login.asp?rd=article.asp?issn=2153-3539;year=2015;volume=6;issue=1;spage=32;epage=32;aulast=Levy (Requires login)
Year published 2015
Volume and issue 6
Page(s) 32
DOI 10.4103/2153-3539.158907
ISSN 2045-2322
Distribution license Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
Website http://www.jpathinformatics.org
Download http://www.jpathinformatics.org/temp/JPatholInform6132-5990369_163823.pdf (PDF)

Abstract

As a result of their practice of medicine, forensic pathologists create a wealth of data regarding the causes of and reasons for sudden, unexpected or violent deaths. This data have been effectively used to protect the health and safety of the general public in a variety of ways despite current and historical limitations. These limitations include the lack of data standards between the thousands of death investigation (DI) systems in the United States, rudimentary electronic information systems for DI, and the lack of effective communications and interfaces between these systems. Collaboration between forensic pathology and clinical informatics is required to address these shortcomings and a path forward has been proposed that will enable forensic pathology to maximize its effectiveness by providing timely and actionable information to public health and public safety agencies.

Keywords: Clinical informatics, death investigation, forensic pathology, public health, public safety

Introduction

Clinical Informatics (CI) and Forensic Pathology would appear to be two subspecialties of medicine with little in common, as many equate informatics with the management of electronic medical records and forensics with the "criminal" investigation of homicides. These commonly held beliefs regarding forensics and informatics are simplistic and woefully incomplete. In reality, both fields are much broader, and there are opportunities for integration between forensics and informatics. Collaboration involving the expertise of the forensic pathologist in medicolegal death investigation (DI) and the skills of the clinical informatician to transform data into information can lead to the development of processes and systems that will better protect the health and safety of the public in an era of expanding threats from infectious disease, violent crime and terrorism.

What is clinical informatics?

Clinical Informatics is a newly recognized subspecialty, with the first board examinations and certifications in 2013 and establishment of Accreditation Council for Graduate Medical Education accredited fellowships starting in 2014. CI is defined as "the subspecialty of all medical specialties that transforms health care by analyzing, implementing, and evaluating information and communication systems to improve patient care, enhance access to care, advance individual and population health outcomes, and strengthen the clinician-patient relationship."[1] CI is commonly confused with Information Technology (IT), yet there is a distinct difference between these two fields. IT emphasizes the tools that are used for data manipulation while not being overly concerned with the data content. In contrast, CI's primary focus is on the data and considers IT as only one of many tools at its disposal.

There are two subdomains within the broad field of CI that are most relevant to forensics: Pathology informatics (PI) and Public health informatics.

Pathology Informatics is "the study and management of information, information systems, and processes in Pathology."[2] This "subspecialty" of Pathology has grown to involve much more than the management of the huge volumes of data generated by anatomic pathology and the clinical laboratory. PI is involved with the entire testing process from the ordering of the test through presentation and interpretation of the results; in other words, the preanalytic, analytic and postanalytic phases of laboratory testing.[3]

Public health informatics is "the systematic application of information, computer science and technology to public health practice, research, and learning."[4] Public health is focused on populations instead of individuals, prevention instead of treatment of disease, and government agencies instead of health care systems.[5] Public health systems work at local, state, national and global levels to both prevent morbidity and mortality utilizing multiple modalities and to address emergent situations such as infectious disease outbreaks when they occur.

References

  1. Accreditation Council for Graduate Medical Education (3 February 2014). "ACGME Program Requirements for Graduate Medical Education in Clinical Informatics" (PDF). http://www.acgme.org/acgmeweb/Portals/0/PFAssets/ProgramRequirements/381_clinical_informatics_02032014.pdf. Retrieved 30 December 2014. 
  2. Levy, B.P.; McClintock, D.S.; Lee, R.E. et al. (2012). "Different tracks for pathology informatics fellowship training: Experiences of and input from trainees in a large multisite fellowship program". Journal of Pathology Informatics 3: 30. doi:10.4103/2153-3539.100362. PMC PMC3445299. PMID 23024889. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445299. 
  3. McClintock, D.S.; Levy, B.P.; Lane, W.J. et al. (2012). "A core curriculum for clinical fellowship training in pathology informatics". Journal of Pathology Informatics 3: 31. doi:10.4103/2153-3539.100364. PMC PMC3445301. PMID 23024890. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445301. 
  4. Yasnoff, W.A.; O′Carroll, P.W.; Koo, D.; Linkins, R.W.; Kilbourne, E.M. (2000). "Public health informatics: Improving and transforming public health in the information age". Journal of Public Health Management and Practice 6 (6): 67–75. http://journals.lww.com/jphmp/Fulltext/2000/06060/Public_Health_Informatics__Improving_and.10.aspx. 
  5. Magnuson, J.A.; O’Carroll, P.W. (2014). "Introduction to public health informatics". In Magnuson, J.A.; Fu Jr., P.C.. Public Health Informatics and Information Systems. pp. 3-18. doi:10.1007/978-1-4471-4237-9_1. ISBN 978-1-4471-4237-9. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added. In Table 2, checkmarks and Xs were replaced with Ys and Ns. The "Methods" section has also been moved from the end to a more logical position before the Discussion and Conclusion.