Journal:The need for informatics to support forensic pathology and death investigation

From LIMSWiki
Revision as of 22:53, 27 January 2016 by Shawndouglas (talk | contribs) (Added content. Saving and adding more.)
Jump to navigationJump to search
Full article title The need for informatics to support forensic pathology and death investigation
Journal Journal of Pathology Informatics
Author(s) Levy, Bruce
Author affiliation(s) University of Illinois at Chicago
Primary contact Email: http://www.jpathinformatics.org (Requires login)
Year published 2015
Volume and issue 6
Page(s) 32
DOI 10.4103/2153-3539.158907
ISSN 2045-2322
Distribution license Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
Website http://www.jpathinformatics.org
Download http://www.jpathinformatics.org/temp/JPatholInform6132-5990369_163823.pdf (PDF)

Abstract

As a result of their practice of medicine, forensic pathologists create a wealth of data regarding the causes of and reasons for sudden, unexpected or violent deaths. This data have been effectively used to protect the health and safety of the general public in a variety of ways despite current and historical limitations. These limitations include the lack of data standards between the thousands of death investigation (DI) systems in the United States, rudimentary electronic information systems for DI, and the lack of effective communications and interfaces between these systems. Collaboration between forensic pathology and clinical informatics is required to address these shortcomings and a path forward has been proposed that will enable forensic pathology to maximize its effectiveness by providing timely and actionable information to public health and public safety agencies.

Keywords: Clinical informatics, death investigation, forensic pathology, public health, public safety

Introduction

Clinical Informatics (CI) and Forensic Pathology would appear to be two subspecialties of medicine with little in common, as many equate informatics with the management of electronic medical records and forensics with the "criminal" investigation of homicides. These commonly held beliefs regarding forensics and informatics are simplistic and woefully incomplete. In reality, both fields are much broader, and there are opportunities for integration between forensics and informatics. Collaboration involving the expertise of the forensic pathologist in medicolegal death investigation (DI) and the skills of the clinical informatician to transform data into information can lead to the development of processes and systems that will better protect the health and safety of the public in an era of expanding threats from infectious disease, violent crime and terrorism.

What is clinical informatics?

Clinical Informatics is a newly recognized subspecialty, with the first board examinations and certifications in 2013 and establishment of Accreditation Council for Graduate Medical Education accredited fellowships starting in 2014. CI is defined as "the subspecialty of all medical specialties that transforms health care by analyzing, implementing, and evaluating information and communication systems to improve patient care, enhance access to care, advance individual and population health outcomes, and strengthen the clinician-patient relationship."[1] CI is commonly confused with Information Technology (IT), yet there is a distinct difference between these two fields. IT emphasizes the tools that are used for data manipulation while not being overly concerned with the data content. In contrast, CI's primary focus is on the data and considers IT as only one of many tools at its disposal.

There are two subdomains within the broad field of CI that are most relevant to forensics: Pathology informatics (PI) and Public health informatics.

Pathology Informatics is "the study and management of information, information systems, and processes in Pathology."[2] This "subspecialty" of Pathology has grown to involve much more than the management of the huge volumes of data generated by anatomic pathology and the clinical laboratory. PI is involved with the entire testing process from the ordering of the test through presentation and interpretation of the results; in other words, the preanalytic, analytic and postanalytic phases of laboratory testing.[3]

Public health informatics is "the systematic application of information, computer science and technology to public health practice, research, and learning."[4] Public health is focused on populations instead of individuals, prevention instead of treatment of disease, and government agencies instead of health care systems.[5] Public health systems work at local, state, national and global levels to both prevent morbidity and mortality utilizing multiple modalities and to address emergent situations such as infectious disease outbreaks when they occur.

What is forensic pathology and medicine?

Forensic pathology is a subspecialty of [[pathology] that concerns itself with the investigation of sudden, unexpected or violent deaths. While only formally recognized since the middle of the 20th Century, the origins of forensic pathology date back many centuries.[6] The major responsibility of the forensic pathologist is to determine the cause and manner of death for persons that fall under their jurisdiction. The forensic pathologist accomplishes this goal by correlating the data collected through conducting a death scene investigation, performing an autopsy, and ordering a variety of additional laboratory tests such as histology, toxicology, and microbiology. Forensic medicine is also involved with the examination and collection of evidence from living persons who are the victims of assault. The most common example of this in the United States is the examination of victims of sexual assault.[7]

There are two main DI systems in the United States, coroners and medical examiners. Both coroners and medical examiners are responsible for investigating sudden, unexpected or violent deaths and making rulings on the cause and manner of the death. Coroners represent an older system that was brought to the United States from England. Coroners are mostly elected officials with no specific training in DI or forensics. Medical examiners are an American system created about a century ago.[6] Medical examiners are all physicians (almost all have formal training in forensic pathology) and are appointed government officials.

Data collection in forensic pathology

As a result of their work, forensic health care professionals gather a large quantity of textual and image data about their patients. This data are not limited to histories, physical examination findings and laboratory results that parallel those collected in other fields of medicine, but also include data gathered at the scene of death and from law enforcement agencies investigating the death. This data are critical in assisting the forensic pathologist in determining the cause and manner of death. Frequently it is the investigative data from the scene instead of the physical findings of the autopsy that allows the forensic pathologist to distinguish an accident from a homicide or suicide.

This data have been historically collected in hard copy formats. While there has been progress toward collecting data in electronic formats in recent years, in 2011 approximately 18% of DI offices had no electronic case management system. Over half of the offices with electronic systems have idiosyncratic homegrown databases, many of them created in simple spreadsheet or database programs. Different data types (image, textual, laboratory results) are not often linked together by patient. For example, approximately 25% of both homegrown and vendor systems do not have direct access to scene and autopsy images.[8]

References

  1. Accreditation Council for Graduate Medical Education (3 February 2014). "ACGME Program Requirements for Graduate Medical Education in Clinical Informatics" (PDF). http://www.acgme.org/acgmeweb/Portals/0/PFAssets/ProgramRequirements/381_clinical_informatics_02032014.pdf. Retrieved 30 December 2014. 
  2. Levy, B.P.; McClintock, D.S.; Lee, R.E. et al. (2012). "Different tracks for pathology informatics fellowship training: Experiences of and input from trainees in a large multisite fellowship program". Journal of Pathology Informatics 3: 30. doi:10.4103/2153-3539.100362. PMC PMC3445299. PMID 23024889. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445299. 
  3. McClintock, D.S.; Levy, B.P.; Lane, W.J. et al. (2012). "A core curriculum for clinical fellowship training in pathology informatics". Journal of Pathology Informatics 3: 31. doi:10.4103/2153-3539.100364. PMC PMC3445301. PMID 23024890. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445301. 
  4. Yasnoff, W.A.; O′Carroll, P.W.; Koo, D.; Linkins, R.W.; Kilbourne, E.M. (2000). "Public health informatics: Improving and transforming public health in the information age". Journal of Public Health Management and Practice 6 (6): 67–75. http://journals.lww.com/jphmp/Fulltext/2000/06060/Public_Health_Informatics__Improving_and.10.aspx. 
  5. Magnuson, J.A.; O’Carroll, P.W. (2014). "Introduction to public health informatics". In Magnuson, J.A.; Fu Jr., P.C.. Public Health Informatics and Information Systems. pp. 3-18. doi:10.1007/978-1-4471-4237-9_1. ISBN 9781447142379. 
  6. 6.0 6.1 Spitz, D.J. (2006). "History and development of forensic medicine and pathology". In Spitz, W.U.; Spitz, D.J.. Spitz and Fisher's Medicolegal Investigation of Death: Guidelines for the Application of Pathology to Crime Investigation. pp. 3-21. ISBN 9780398075446. https://books.google.com/books?id=-m_fb580Vx0C. 
  7. U.S. Department of Justice Office on Violence Against Women (April 2013). "A National Protocol for Sexual Assault Medical Forensic Examinations" (PDF). U.S. Department of Justice. https://www.ncjrs.gov/pdffiles1/ovw/241903.pdf. Retrieved 30 December 2014. 
  8. Levy, B.P. (2013). "Implementation and user satisfaction with forensic laboratory information systems in death investigation offices". The American Journal of Forensic Medicine and Pathology 34 (1): 63–67. doi:10.1097/PAF.0b013e31827ab5c6. PMID 23361076. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added. In Table 2, checkmarks and Xs were replaced with Ys and Ns. The "Methods" section has also been moved from the end to a more logical position before the Discussion and Conclusion.