Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to: navigation, search
(Updated article of the week text)
(Updated article of the week text)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig17 Pinheiro Sensors2018 18-3.png|240px]]</div>
+
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Perez-Castillo Sensors2018 18-9.png|240px]]</div>
'''"[[Journal:Security architecture and protocol for trust verifications regarding the integrity of files stored in cloud services|Security architecture and protocol for trust verifications regarding the integrity of files stored in cloud services]]"'''
+
'''"[[Journal:DAQUA-MASS: An ISO 8000-61-based data quality management methodology for sensor data|DAQUA-MASS: An ISO 8000-61-based data quality management methodology for sensor data]]"'''
  
[[Cloud computing]] is considered an interesting paradigm due to its scalability, availability, and virtually unlimited storage capacity. However, it is challenging to organize a cloud storage service (CSS) that is safe from the client point-of-view and to implement this CSS in public clouds since it is not advisable to blindly consider this configuration as fully trustworthy. Ideally, owners of large amounts of data should trust their data to be in the cloud for a long period of time, without the burden of keeping copies of the original data, nor of accessing the whole content for verification regarding data preservation. Due to these requirements, [[Data integrity|integrity]], availability, [[Information privacy|privacy]], and trust are still challenging issues for the adoption of cloud storage services, especially when losing or leaking [[information]] can bring significant damage, be it legal or business-related. With such concerns in mind, this paper proposes an architecture for periodically monitoring both the information stored in the cloud and the service provider behavior. ('''[[Journal:Security architecture and protocol for trust verifications regarding the integrity of files stored in cloud services|Full article...]]''')<br />
+
The [[internet of things]] (IoT) introduces several technical and managerial challenges when it comes to the use of data generated and exchanged by and between various smart, connected products (SCPs) that are part of an IoT system (i.e., physical, intelligent devices with sensors and actuators). Added to the volume and the heterogeneous exchange and consumption of data, it is paramount to [[Quality assurance|assure]] that data quality levels are maintained in every step of the data chain/lifecycle. Otherwise, the system may fail to meet its expected function. While data quality (DQ) is a mature field, existing solutions are highly heterogeneous. Therefore, we propose that companies, developers, and vendors should align their data quality management mechanisms and artifacts with well-known best practices and [[Specification (technical standard)|standards]], as for example, those provided by ISO 8000-61. This standard enables a process-approach to data quality management, overcoming the difficulties of isolated data quality activities. This paper introduces DAQUA-MASS, a methodology based on ISO 8000-61 for data quality management in sensor networks. ('''[[Journal:DAQUA-MASS: An ISO 8000-61-based data quality management methodology for sensor data|Full article...]]''')<br />
 
<br />
 
<br />
 
''Recently featured'':
 
''Recently featured'':
 +
: ▪ [[Journal:Security architecture and protocol for trust verifications regarding the integrity of files stored in cloud services|Security architecture and protocol for trust verifications regarding the integrity of files stored in cloud services]]
 
: ▪ [[Journal:What Is health information quality? Ethical dimension and perception by users|What Is health information quality? Ethical dimension and perception by users]]
 
: ▪ [[Journal:What Is health information quality? Ethical dimension and perception by users|What Is health information quality? Ethical dimension and perception by users]]
 
: ▪ [[Journal:SCADA system testbed for cybersecurity research using machine learning approach|SCADA system testbed for cybersecurity research using machine learning approach]]
 
: ▪ [[Journal:SCADA system testbed for cybersecurity research using machine learning approach|SCADA system testbed for cybersecurity research using machine learning approach]]
: ▪ [[Journal:Semantics for an integrative and immersive pipeline combining visualization and analysis of molecular data|Semantics for an integrative and immersive pipeline combining visualization and analysis of molecular data]]
 

Revision as of 14:43, 13 May 2019

Fig1 Perez-Castillo Sensors2018 18-9.png

"DAQUA-MASS: An ISO 8000-61-based data quality management methodology for sensor data"

The internet of things (IoT) introduces several technical and managerial challenges when it comes to the use of data generated and exchanged by and between various smart, connected products (SCPs) that are part of an IoT system (i.e., physical, intelligent devices with sensors and actuators). Added to the volume and the heterogeneous exchange and consumption of data, it is paramount to assure that data quality levels are maintained in every step of the data chain/lifecycle. Otherwise, the system may fail to meet its expected function. While data quality (DQ) is a mature field, existing solutions are highly heterogeneous. Therefore, we propose that companies, developers, and vendors should align their data quality management mechanisms and artifacts with well-known best practices and standards, as for example, those provided by ISO 8000-61. This standard enables a process-approach to data quality management, overcoming the difficulties of isolated data quality activities. This paper introduces DAQUA-MASS, a methodology based on ISO 8000-61 for data quality management in sensor networks. (Full article...)

Recently featured:

Security architecture and protocol for trust verifications regarding the integrity of files stored in cloud services
What Is health information quality? Ethical dimension and perception by users
SCADA system testbed for cybersecurity research using machine learning approach