Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text.)
(Updated article of the week text)
(36 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''"[[Journal:How could the ethical management of health data in the medical field inform police use of DNA?|How could the ethical management of health data in the medical field inform police use of DNA?]]"'''
'''"[[Journal:Defending our public biological databases as a global critical infrastructure|Defending our public biological databases as a global critical infrastructure]]"'''


Various events paved the way for the production of ethical norms regulating biomedical practices, from the Nuremberg Code (1947)—produced by the international trial of Nazi regime leaders and collaborators—and the Declaration of Helsinki by the World Medical Association (1964) to the invention of the term “bioethics” by American biologist Van Rensselaer Potter. The ethics of biomedicine has given rise to various controversies—particularly in the fields of newborn screening, prenatal screening, and cloning—resulting in the institutionalization of ethical questions in the biomedical world of genetics. In 1994, France passed legislation (commonly known as the “bioethics laws”) to regulate medical practices in genetics. The medical community has also organized itself in order to manage ethical issues relating to its decisions, with a view to handling “practices with many strong uncertainties” and enabling clinical judgments and decisions to be made not by individual practitioners but rather by multidisciplinary groups drawing on different modes of judgment and forms of expertise. Thus, the biomedical approach to genetics has been characterized by various debates and the existence of public controversies. ('''[[Journal:How could the ethical management of health data in the medical field inform police use of DNA?|Full article...]]''')<br />
Progress in modern biology is being driven, in part, by the large amounts of freely available data in public resources such as the International Nucleotide Sequence Database Collaboration (INSDC), the world's primary database of biological sequence (and related) [[information]]. INSDC and similar databases have dramatically increased the pace of fundamental biological discovery and enabled a host of innovative therapeutic, diagnostic, and forensic applications. However, as high-value, openly shared resources with a high degree of assumed trust, these repositories share compelling similarities to the early days of the internet. Consequently, as public biological databases continue to increase in size and importance, we expect that they will face the same threats as undefended cyberspace. There is a unique opportunity, before a significant breach and loss of trust occurs, to ensure they evolve with quality and security as a design philosophy rather than costly “retrofitted” mitigations. This perspective article surveys some potential quality assurance and security weaknesses in existing open [[Genomics|genomic]] and [[Proteomics|proteomic]] repositories, describes methods to mitigate the likelihood of both intentional and unintentional errors, and offers recommendations for risk mitigation based on lessons learned from [[cybersecurity]]. ('''[[Journal:Defending our public biological databases as a global critical infrastructure|Full article...]]''')<br />
<br />
<br />
''Recently featured'':
''Recently featured'':
: ▪ [[Journal:Big data in the era of health information exchanges: Challenges and opportunities for public health|Big data in the era of health information exchanges: Challenges and opportunities for public health]]
: ▪ [[Journal:Determining the hospital information system (HIS) success rate: Development of a new instrument and case study|Determining the hospital information system (HIS) success rate: Development of a new instrument and case study]]
: ▪ [[Journal:Promoting data sharing among Indonesian scientists: A proposal of a generic university-level research data management plan (RDMP)|Promoting data sharing among Indonesian scientists: A proposal of a generic university-level research data management plan (RDMP)]]
: ▪ [[Journal:Smart information systems in cybersecurity: An ethical analysis|Smart information systems in cybersecurity: An ethical analysis]]
: ▪ [[Journal:systemPipeR: NGS workflow and report generation environment|systemPipeR: NGS workflow and report generation environment]]
: ▪ [[Journal:Chemometric analysis of cannabinoids: Chemotaxonomy and domestication syndrome|Chemometric analysis of cannabinoids: Chemotaxonomy and domestication syndrome]]

Revision as of 15:16, 23 July 2019

"Defending our public biological databases as a global critical infrastructure"

Progress in modern biology is being driven, in part, by the large amounts of freely available data in public resources such as the International Nucleotide Sequence Database Collaboration (INSDC), the world's primary database of biological sequence (and related) information. INSDC and similar databases have dramatically increased the pace of fundamental biological discovery and enabled a host of innovative therapeutic, diagnostic, and forensic applications. However, as high-value, openly shared resources with a high degree of assumed trust, these repositories share compelling similarities to the early days of the internet. Consequently, as public biological databases continue to increase in size and importance, we expect that they will face the same threats as undefended cyberspace. There is a unique opportunity, before a significant breach and loss of trust occurs, to ensure they evolve with quality and security as a design philosophy rather than costly “retrofitted” mitigations. This perspective article surveys some potential quality assurance and security weaknesses in existing open genomic and proteomic repositories, describes methods to mitigate the likelihood of both intentional and unintentional errors, and offers recommendations for risk mitigation based on lessons learned from cybersecurity. (Full article...)

Recently featured:

Determining the hospital information system (HIS) success rate: Development of a new instrument and case study
Smart information systems in cybersecurity: An ethical analysis
Chemometric analysis of cannabinoids: Chemotaxonomy and domestication syndrome