Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to: navigation, search
(Updated article of the week text)
(Updated article of the week text)
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig3 Galliano JofPathInfo2019 10.jpg|240px]]</div>
+
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Mandrioli Molecules2019 24-11.png|240px]]</div>
'''"[[Journal:Process variation detection using missing data in a multihospital community practice anatomic pathology laboratory|Process variation detection using missing data in a multihospital community practice anatomic pathology laboratory]]"'''
+
'''"[[Journal:Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L.|Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L.]]"'''
  
[[Barcode]]-driven [[workflow]]s reduce patient identification errors. Missing process timestamp data frequently confound our health system's pending lists and appear as actions left undone. Anecdotally, it was noted that missing data could be found when there is procedure noncompliance. This project was developed to determine if missing timestamp data in the histology barcode-driven workflow correlated with other process variations, procedure noncompliance, or is an indicator of workflows needing focus for improvement projects. Data extracts of timestamp data from January 1, 2018 to December 15, 2018 for the major histology process steps were analyzed for missing data. Case-level analysis to determine the presence or absence of expected barcoding events was performed on 1031 surgical pathology cases to determine the cause of the missing data and determine if additional data variations or procedure noncompliance events were present. The data variations were classified according to a scheme defined in the study. ('''[[Journal:Process variation detection using missing data in a multihospital community practice anatomic pathology laboratory|Full article...]]''')<br />
+
[[wikipedia:Cannabis|Cannabis]] has regained much attention as a result of updated legislation authorizing many different uses, and it can be classified on the basis of the content of [[wikipedia:Tetrahydrocannabinol|Δ9-tetrahydrocannabinol]] (Δ9-THC), a psychotropic substance for which there are legal limitations in many countries. For this purpose, accurate qualitative and quantitative determination is essential. The relationship between THC and [[wikipedia:Cannabidiol|cannabidiol]] (CBD) is also significant, as the latter substance is endowed with many specific and non-psychoactive proprieties. For these reasons, it becomes increasingly important and urgent to utilize fast, easy, validated, and harmonized procedures for determination of [[wikipedia:Cannabinoid|cannabinoids]]. The procedure described herein allows rapid determination of 10 cannabinoids from the [[wikipedia:Inflorescence|inflorescences]] of ''Cannabis sativa'' L. by extraction with organic solvents. Separation and subsequent detection are by [[wikipedia:Reversed-phase chromatography|reversed-phase]] [[high-performance liquid chromatography]] with ultraviolet detector (RP-HPLC-UV). ('''[[Journal:Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L.|Full article...]]''')<br />
 
<br />
 
<br />
 
''Recently featured'':
 
''Recently featured'':
: ▪ [[Journal:Development and validation of a fast gas chromatography–mass spectrometry method for the determination of cannabinoids in Cannabis sativa L|Development and validation of a fast gas chromatography–mass spectrometry method for the determination of cannabinoids in Cannabis sativa L]]
+
: ▪ [[Journal:What is this sensor and does this app need access to it?|What is this sensor and does this app need access to it?]]
: ▪ [[Journal:Design and refinement of a data quality assessment workflow for a large pediatric research network|Design and refinement of a data quality assessment workflow for a large pediatric research network]]
+
: ▪ [[Journal:AI meets exascale computing: Advancing cancer research with large-scale high-performance computing|AI meets exascale computing: Advancing cancer research with large-scale high-performance computing]]
: ▪ [[Journal:Identification of Cannabis sativa L. (hemp) retailers by means of multivariate analysis of cannabinoids|Identification of Cannabis sativa L. (hemp) retailers by means of multivariate analysis of cannabinoids]]
+
: ▪ [[Journal:Building infrastructure for African human genomic data management|Building infrastructure for African human genomic data management]]

Revision as of 16:43, 20 January 2020

Fig1 Mandrioli Molecules2019 24-11.png

"Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L."

Cannabis has regained much attention as a result of updated legislation authorizing many different uses, and it can be classified on the basis of the content of Δ9-tetrahydrocannabinol (Δ9-THC), a psychotropic substance for which there are legal limitations in many countries. For this purpose, accurate qualitative and quantitative determination is essential. The relationship between THC and cannabidiol (CBD) is also significant, as the latter substance is endowed with many specific and non-psychoactive proprieties. For these reasons, it becomes increasingly important and urgent to utilize fast, easy, validated, and harmonized procedures for determination of cannabinoids. The procedure described herein allows rapid determination of 10 cannabinoids from the inflorescences of Cannabis sativa L. by extraction with organic solvents. Separation and subsequent detection are by reversed-phase high-performance liquid chromatography with ultraviolet detector (RP-HPLC-UV). (Full article...)

Recently featured:

What is this sensor and does this app need access to it?
AI meets exascale computing: Advancing cancer research with large-scale high-performance computing
Building infrastructure for African human genomic data management