Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
m (Corrected article link)
(Updated article of the week text)
(303 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:NIH Master Logo Vertical 2Color.png|140px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig4 Auer CytometryPartA2018 93-7.jpg|240px]]</div>
The '''[[National Institutes of Health]]''' ('''NIH''') is a biomedical research facility primarily located in Bethesda, Maryland, USA, operating as an agency of the [[United States Department of Health and Human Services]]. The NIH is the U.S. agency most responsible for biomedical and health-related research, primarily through its Intramural Research Program (IRP), which claims to be "the largest institution for biomedical science on earth." In addition to conducting its own research, the agency provides major biomedical research funding to non-NIH research facilities through its Extramural Research Program (ERP). For example, in 2003 the NIH and its extramural arm provided 28% of biomedical research funding spent annually in the U.S., or about $26.4 billion.
'''"[[Journal:ChromaWizard: An open-source image analysis software for multicolor fluorescence in situ hybridization analysis|ChromaWizard: An open-source image analysis software for multicolor fluorescence in situ hybridization analysis]]"'''


The NIH comprises 27 separate institutes and centers that conduct research in different disciplines of biomedical science. The IRP is responsible for many scientific accomplishments, including the discovery of fluoride to prevent tooth decay, the use of lithium to manage bipolar disorder, and the creation of vaccines against hepatitis, ''Haemophilus influenzae'' (HIB), and human papillomavirus. The funding of NIH has at times been a source of contention in Congress, serving as a proxy for the political currents of the time. In fiscal year 2010, NIH spent $10.7 billion (not including temporary funding from the ARRA) on clinical research, $7.4 billion on genetics-related research, $6.0 billion on prevention research, $5.8 billion on cancer, and $5.7 billion on [[biotechnology]]. ('''[[National Institutes of Health|Full article...]]''')<br />
Multicolor image analysis finds its applications in a broad range of biological studies. Specifically, multiplex [[wikipedia:Fluorescence in situ hybridization|fluorescence ''in situ'' hybridization]] (M‐FISH) for chromosome painting facilitates the analysis of individual chromosomes in complex metaphase spreads and is widely used to detect both numerical and structural aberrations. While this is well established for human and mouse [[wikipedia:Karyotype|karyotypes]], for which species sophisticated software and analysis tools are available, other organisms and species are less well served. Commercially available software is proprietary and not easily adaptable to other karyotypes. Therefore, a publicly available open-source software that combines flexibility and customizable functionalities is needed. Here we present such a tool, called “ChromaWizard,” which is based on popular scientific image analysis libraries (OpenCV, scikit‐image, and NumPy). We demonstrate its functionality on the example of primary Chinese hamster (''Cricetulus griseus'') fibroblasts metaphase spreads and on Chinese hamster ovary cell lines, known for their large number of chromosomal rearrangements. ('''[[Journal:ChromaWizard: An open-source image analysis software for multicolor fluorescence in situ hybridization analysis|Full article...]]''')<br />
<br />
<br />
''Recently featured'': [[Laboratory information system]], [[Denuder]], [[Infectious disease informatics]]
''Recently featured'':
: ▪ [[Journal:Haves and have nots must find a better way: The case for open scientific hardware|Haves and have nots must find a better way: The case for open scientific hardware]]
: ▪ [[Journal:CytoConverter: A web-based tool to convert karyotypes to genomic coordinates|CytoConverter: A web-based tool to convert karyotypes to genomic coordinates]]
: ▪ [[Journal:Implementing a novel quality improvement-based approach to data quality monitoring and enhancement in a multipurpose clinical registry|Implementing a novel quality improvement-based approach to data quality monitoring and enhancement in a multipurpose clinical registry]]

Revision as of 22:58, 24 February 2020

Fig4 Auer CytometryPartA2018 93-7.jpg

"ChromaWizard: An open-source image analysis software for multicolor fluorescence in situ hybridization analysis"

Multicolor image analysis finds its applications in a broad range of biological studies. Specifically, multiplex fluorescence in situ hybridization (M‐FISH) for chromosome painting facilitates the analysis of individual chromosomes in complex metaphase spreads and is widely used to detect both numerical and structural aberrations. While this is well established for human and mouse karyotypes, for which species sophisticated software and analysis tools are available, other organisms and species are less well served. Commercially available software is proprietary and not easily adaptable to other karyotypes. Therefore, a publicly available open-source software that combines flexibility and customizable functionalities is needed. Here we present such a tool, called “ChromaWizard,” which is based on popular scientific image analysis libraries (OpenCV, scikit‐image, and NumPy). We demonstrate its functionality on the example of primary Chinese hamster (Cricetulus griseus) fibroblasts metaphase spreads and on Chinese hamster ovary cell lines, known for their large number of chromosomal rearrangements. (Full article...)

Recently featured:

Haves and have nots must find a better way: The case for open scientific hardware
CytoConverter: A web-based tool to convert karyotypes to genomic coordinates
Implementing a novel quality improvement-based approach to data quality monitoring and enhancement in a multipurpose clinical registry