User:Shawndouglas/sandbox/sublevel5

From LIMSWiki
< User:Shawndouglas‎ | sandbox
Revision as of 22:28, 27 June 2017 by Shawndouglas (talk | contribs) (Saving and adding more.)
Jump to navigationJump to search

Here we take a brief look at the history of the laboratory to help give perspective about why they're important to modern life.

-----Return to the beginning of this guide-----

Laboratories: A historical perspective

Introduction

Origins of the laboratory

Among the earliest known organized scientific study was that under the rule of the early Ptolomies of Alexandria in the third century B.C. While little to no evidence seems to exist for public or organized laboratories during this time period, researchers and historians widely accept the idea that at least organized and individual research (meaning "direct personal contact with the objects of study, and by the aid of such appliances as were then available"[1]) into anatomy, physiology, and medicine took place.[2][3][1][4] Dissections and experiments took place, but certainly not in an organized teaching or research laboratory setting like today. Early twentieth-century philosopher of science Edgar Zilsel suggests that scientific endeavor was non-collaborative in this early era, and the laboratory as a collaborative environment simply didn't exist[2]:

No publications, no astronomical or geographical investigation which are the work of several collaborating scientists are known. Even the learned compendia of the Roman period (Varro, Pliny, Celsus) and the encyclopedias of late antiquity (Boëthius) were composed by single polyhistors. There is no evidence that the Alexandrian Museum conjointly carried out investigations. Laboratories, the birth places of scientific co-operation in the modern era, existed neither in the Alexandrian Museum, nor in the Academy, nor in the Lyceum. As far as the fellow scholars of the museum did not work each for himself they might have contented themselves with dinners and debates. And of course, there were in antiquity no scientific periodicals in which new findings could have been discussed.

With scientific advancement and discovery still largely a personal (i.e, prestigious) goal, even through the Renaissance humanists of the fourteenth through sixteenth century A.D.[2], it would take quite some time for both the private and public laboratory to evolve. To be certain, private laboratories surely existed, from Aristotle[1] (third century B.C.) to the anatomical laboratory — "the first scientific laboratory" — that began to take hold in the late thirteenth to early fourteenth century[1][5], all the way to the "zenith" of the alchemical research laboratory in the second half of the sixteenth century.[6] But it wouldn't be until the late sixteenth to early seventeenth century that collaboratory science and the first university-affiliated labs would appear.

Zilsel claims that Italian polymath Galileo Galilei, while teaching at the University of Padua from 1592 to 1610, founded the first university-affiliated laboratory in his own home, with help from craftsmen who aided in researching architectural and mechanical concepts.[7] As Galileo was nearing completion of his professorship at Padua, chemist Johannes Hartmann opened up a university laboratory for students at the University of Marburg in 1609, albeit for "instruction not in [chemical] analysis — still in a very rudimentary state — but in pharmaceutical preparations."[8] One of the first actual public laboratories dedicated to chemical instruction was founded later that century, in 1683, hosted at the University of Altdorf, created and directed by physician and professor Johan Moritz Hofmann.[8][9][10] That same year the (Old) Ashmolean played host to Britian's first university laboratory, directed by chemistry chair Robert Plot.[11][12]

By the end of the seventeenth century, textbooks on various subjects such as anatomy[13] and chemistry[9] were becoming more notable, and numerous vital scientific measurement and observation devices — including astronomy equipment — had been created.[14] And most importantly, as early twentieth century political science researcher Martha Ornstein put it, after much build-up, finally "the [public] chemical and physical laboratory existed in embryonic form."[14]

Eighteenth- and nineteenth-century laboratories

The teaching of practical or "physical chemistry" — separating itself even further by several decades from alchemical study — first took place in St. Petersburg, Russia in 1751 under the professorship of Mikhail Lomonosov. Two years prior he had built for him a small 15 x 9 meter brick structure where he developed colored glasses for mosaics, but he quickly turned his focus towards teaching students in physical chemistry, "a science which must explain by means of physical laws and experiments the cause of changes produced by chemical operations in composite bodies."[15]

In 1806, Friedrich Stromeyer, fresh from being named "extraordinary professor" after the death of Johann Friedrich Gmelin, took over as director of University of Göttingen's chemical laboratory. Stromeyer's strong opinion that students could only learn chemistry best through practice and self-analysis led to a subtle but significant change: the development of one of the first university laboratories in Germany to offer students hands-on chemical analysis.[10][8]

Modern laboratories and their importance

References

  1. 1.0 1.1 1.2 1.3 Welch, William Henry (1920). "The Evolution of Modern Scientific Laboratories". Papers and Addresses by William Henry Welch. 3. The Johns Hopkins Press. pp. 200–211. http://books.google.com/books?id=utc0AQAAMAAJ&pg=200. 
  2. 2.0 2.1 2.2 Zilsel, E. (2003). "The Genesis of the Concept of Scientific Progress and Cooperation". In Cohen, R.S., Wartofsky, M.W.. The Social Origins of Modern Science. Boston Studies in the Philosophy of Science. Kluwer Academic Publishers. pp. 130–171. ISBN 1402013590. 
  3. Martin, H.N. (1895). "Some Thoughts About Laboratories". Physiological Papers. The John Hopkins Press. pp. 256–264. https://books.google.com/books?id=Raw-AQAAMAAJ&pg=PA256. 
  4. Serageldin, I. (2013). "Ancient Alexandria and the dawn of medical science". Global Cardiology Science & Practice 2013 (4): 395–404. doi:10.5339/gcsp.2013.47. PMC PMC3991212. PMID 24749113. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991212. 
  5. Walker, H.K. (1990). "Chapter 1: The Origins of the History and Physical Examination". In Walker, H.K.; Hall, W.D.; Hurst, J.W.. Clinical Methods: The History, Physical, and Laboratory Examinations (3rd ed.). Butterworths. ISBN 040990077X. https://www.ncbi.nlm.nih.gov/books/NBK201/. 
  6. Martinón-Torres, M.; Rehren, T.; von Osten, S.. "A 16th century lab in a 21st century lab: Archaeometric study of the laboratory equipment from Oberstockstall (Kirchberg am Wagram, Austria)". Antiquity 77 (298). http://antiquity.ac.uk/projgall/martinon298. 
  7. Zilsel, E. (2000). "The Sociological Roots of Science". Social Studies of Science 30 (6): 935–949. http://www.jstor.org/stable/285793. 
  8. 8.0 8.1 8.2 Ihde, A.J. (1984). "Chapter 10: The Diffusion of Chemical Knowledge". The Development of Modern Chemistry. Dover Publications. pp. 259–276. ISBN 0486642356. https://books.google.com/books?id=89BIAwAAQBAJ&pg=PA262. 
  9. 9.0 9.1 Wiechmann, F.G. (1899). Chemistry: Its Evolution and Achievements. Science Sketches. New York: William R. Jenkins. pp. 176. https://books.google.com/books?id=z4k-AAAAYAAJ&pg=PA83. 
  10. 10.0 10.1 Lockemann, G.; Oesper, R.E. (1953). "Friedrich Stromeyer and the history of chemical laboratory instruction". Journal of Chemical Education 30 (4): 202–204. doi:10.1021/ed030p202. 
  11. Bowen, E.J. (1970). "The Balliol-Trinity Laboratories, Oxford 1853-1940". Notes and Records of the Royal Society of London 25 (2): 227–236. http://www.jstor.org/stable/530877. 
  12. Martinón-Torres, M. (2011-2012). "The Archaeology of Alchemy and Chemistry in the Early Modern World: An Afterthought". Archaeology International 15: 33–36. doi:10.5334/ai.1508. 
  13. Bartholin, T. (2015). he Anatomy House in Copenhagen. Museum Tusculanum Press. pp. 222. ISBN 9788763542593. https://books.google.com/books?id=Y9o_CgAAQBAJ&pg=PA20. 
  14. 14.0 14.1 Bronfenbrenner, M.O. (1913). The Role of Scientific Societies in the Seventeenth Century. Chicago: University of Chicago Press. pp. 308. https://books.google.com/books?id=-v4CAAAAIAAJ&pg=PA11. 
  15. Menschutkin, B.N.. "A Russian physical chemist of the eighteenth century". Journal of Chemical Education 4 (9): 1079–1087. doi:10.1021/ed004p1079.