User:Shawndouglas/sandbox/sublevel9

From LIMSWiki
Jump to navigationJump to search

Sandbox begins below

Full article title The development and application of bioinformatics core competencies to improve bioinformatics training and education
Journal PLOS Computational Biology
Author(s) Mulder, Nicola; Schwartz, Russell; Brazas, Michelle, D.; Brooksbank, Carth; Gaeta, Bruno; Morgan, Sarah L.;
Pauley, Mark A.; Rosenwald, Anne; Rustici, Gabriella; Sierk, Michael; Warnow, Tandy; Welch, Lonnie
Author affiliation(s) University of Cape Town, Carnegie Mellon University, Ontario Institute for Cancer Research, Wellcome Genome Campus, University of New South Wales, University
of Nebraska at Omaha, Georgetown University, University of Cambridge, Saint Vincent College, University of Illinois at Urbana-Champaign, Ohio University
Primary contact Email: nicola dot mulder at uct dot ac dot za
Year published 2018
Volume and issue 14(2)
Page(s) e1005772
DOI 10.1371/journal.pcbi.1005772
ISSN 1553-7358
Distribution license Creative Commons Attribution 4.0 International
Website http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005772
Download http://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005772&type=printable (PDF)

Abstract

Bioinformatics is recognized as part of the essential knowledge base of numerous career paths in biomedical research and healthcare. However, there is little agreement in the field over what that knowledge entails or how best to provide it. These disagreements are compounded by the wide range of populations in need of bioinformatics training, with divergent prior backgrounds and intended application areas. The Curriculum Task Force of the International Society of Computational Biology (ISCB) Education Committee has sought to provide a framework for training needs and curricula in terms of a set of bioinformatics core competencies that cut across many user personas and training programs. The initial competencies developed based on surveys of employers and training programs have since been refined through a multiyear process of community engagement. This report describes the current status of the competencies and presents a series of use cases illustrating how they are being applied in diverse training contexts. These use cases are intended to demonstrate how others can make use of the competencies and engage in the process of their continuing refinement and application. The report concludes with a consideration of remaining challenges and future plans.

Introduction

The need for bioinformatics education and training is immense, but it is also diverse. There is a wide range of audiences who are potential recipients of training, each of which has different needs in terms of what skills or knowledge they require and at what depth. For example, someone training to be a bioinformatics engineer (which we define as someone who will actively be involved in the development and application of bioinformatics algorithms) requires in-depth knowledge of existing algorithms, how they work, how to critically evaluate them, and how to interpret the results. By contrast, a bioinformatics user (which we define as someone making use of bioinformatics resources in an applied context, such as in medical practice) would need a basic level of understanding of the methods and a stronger focus on the interpretation of the outputs. In a recent publication[1], the ISCB Education Committee’s Curriculum Task Force described the potential for refinement and application of bioinformatics core competencies for different user groups. Here, we describe the further refinement of these competencies and provide a series of use cases illustrating their applications to different bioinformatics education and training programs globally.

Development of core competencies for bioinformatics

The ISCB Curriculum Task Force undertook the task of identifying some of the breadth of needs for bioinformatics education, as described in a series of reports from the task force. This effort arose first from a series of surveys of current training practice and desired training needs[2], which identified a set of broad categories of training needs but also widespread disparities across programs in what was taught, how, and for what intended target audiences. An outcome of these surveys was the need for identifying a set of core competencies as broad categories of skills and training that cross different programs and training needs and that can provide a basis for discussing similarities and differences between programs and desired outcomes. This led to a further effort to define a set of initial core competencies[3] that in turn led to an intensive program of community engagement to refine these competencies to better serve the breadth of needs of the bioinformatics training community.

There were three major steps in the development of the core competencies: (1) defining the competencies needed for using bioinformatics, (2) defining a variety of user profiles describing distinct subgroups in need of training, and (3) defining how the competencies will apply to each user profile (scoring). The core competency framework was developed through an iterative process with input from multiple parties from diverse backgrounds with a connection to bioinformatics. In order to gain a broader appreciation of which competencies the bioinformatics community considers relevant for different bioinformatics user profiles, the ISCB Curriculum Task Force has run several competency workshops (discussion sessions for defining the competencies and their applications) both at ISCB conferences and at other bioinformatics education venues such as the GOBLET (Global Organisation for Bioinformatics Learning, Education and Training) Annual General Meeting. Each iteration of a competency workshop has greatly enhanced not only the competencies themselves but also the definitions of the user profiles[1] and the competency-use case scoring mechanism.

Initially, the mapping of bioinformatics competencies to audiences considered three major user profiles: (1) the bioinformatics user; (2) the bioinformatics scientist; and (3) the bioinformatics engineer. Early competency workshops quickly surmised that these user profiles were too narrow and did not adequately capture the breadth of roles requiring bioinformatics competency and curriculum. Participants spent much of the workshop time defining a bioinformatics user or distinguishing a bioinformatics scientist from a bioinformatics engineer. The use case roles were subsequently expanded to better embody the breadth of bioinformatics users, including physicians, lab technicians, ethicists and biocurators, scientists (which include the discovery biologist, academic bioinformatics researcher, and core facility scientist), and engineers (which may be a bioinformatician in academia, bioinformatician in research institute, or software engineer). This change allowed for subsequent workshop participants to self-select according to the category of user with which they most identified.

With user profiles better defined, competency workshops then struggled with the competencies themselves and their definitions. Several early competency definitions appeared to overlap. For example, “Apply knowledge of computing appropriate to the discipline (e.g., effectively utilize bioinformatics tools)” closely resembled “Analyze a problem and identify and define the computing requirements appropriate to its solution (e.g., define algorithmic time and space complexities and hardware resources required to solve a problem).” Workshop participants helped to reduce the redundancy in our initial set of bioinformatics competencies from 20 competencies to a refined set of 16 competencies.

Competency workshops have additionally helped to revise the scoring of competencies for each user profile. Early workshops scored the applicability of a bioinformatics competency to a particular profile with a simple yes/no response, which did not allow for an appreciation of the depth of the competency necessary for a given profile. Such a scoring approach, while better than no score, would not be helpful when developing a curriculum for a specific user profile. Subsequent workshops used a graded scoring approach, with grades ranging from 1 (no competency required) to 4 (specialist knowledge required). This, too, proved too ambiguous to allow for meaningful discussion and classification. The scoring approach was thus revised again to the current model, which uses the Bloom’s Revised Taxonomy[4] terms: knowledge, comprehension, application, analysis, synthesis, and evaluation. While the use of Bloom’s Taxonomy has been useful in mapping competency levels to each of the user profiles, this change required refinement of the competency list as several of the earlier competencies incorporated Bloom’s Taxonomy terms.

Overall, competency workshops have been invaluable to the enhancement and refinement of the bioinformatics competencies. Through these workshops, the ISCB Curriculum Task Force has been able to construct a useful set of bioinformatics competencies that curriculum developers can use to develop, compare, and assess impactful bioinformatics training programs for a wide range of audiences and ultimately help establish bioinformatics skills in such audiences.[3]

Table 1 reports the current state of the competencies developed and refined through this community engagement process. Tables 2–4 map these refined competencies to a broader set of personas, suggested over the course of the Task Force’s community engagement efforts, via Bloom’s Taxonomy terms. For reference, Table 5 provides examples and definitions of the Bloom's Revised Taxonomy terms. In the next section, we provide some examples of how the competencies have been applied in a variety of training contexts.

References

  1. 1.0 1.1 Welch, L.; Brooksban, C.; Schwartz, R. et al. (2016). "Applying, Evaluating and Refining Bioinformatics Core Competencies (An Update from the Curriculum Task Force of ISCB's Education Committee)". PLOS Computational Biology 12 (5): e1004943. doi:10.1371/journal.pcbi.1004943. PMC PMC4866758. PMID 27175996. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4866758. 
  2. Welch, L.R.; Schwartz, R.; Lewitter, F. (2012). "A report of the Curriculum Task Force of the ISCB Education Committee". PLOS Computational Biology 8 (6): e1002570. doi:10.1371/journal.pcbi.1002570. PMC PMC3386154. PMID 22761560. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386154. 
  3. 3.0 3.1 Welch, L.; Lewitter, F; Schwartz, R. et al. (2014). "Bioinformatics curriculum guidelines: toward a definition of core competencies". PLOS Computational Biology 10 (3): e1003496. doi:10.1371/journal.pcbi.1003496. PMC PMC3945096. PMID 24603430. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945096. 
  4. Anderson, L.W.; Krathwohl, D.R., ed. (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. Pearson. pp. 336. ISBN 9780801319037. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation, spelling, and grammar. PMCID and DOI were added when they were missing from the original reference.