Journal:Bioinformatics workflow for clinical whole genome sequencing at Partners HealthCare Personalized Medicine

From LIMSWiki
Revision as of 19:22, 21 November 2016 by Shawndouglas (talk | contribs) (Saving and adding more.)
Jump to navigationJump to search
Full article title Bioinformatics workflow for clinical whole genome sequencing at Partners HealthCare Personalized Medicine
Journal Journal of Personalized Medicine
Author(s) Tsai, E.A.; Shakbatyan, R.; Evan, J.; Rossetti, P.; Graham, C.; Sharma, H.; Lin, C.-F., Lebo, M.S.
Author affiliation(s) Partners HealthCare, Brigham and Women’s Hospital, Harvard Medical School
Primary contact Tel.: +1-617-768-8292
Editors Weiss, S.T.; Liggett, S.B.
Year published 2016
Volume and issue 6(1)
Page(s) 12
DOI 10.3390/jpm6010012
ISSN 2075-4426
Distribution license Creative Commons Attribution 4.0 International
Website http://www.mdpi.com/2075-4426/6/1/12/htm
Download http://www.mdpi.com/2075-4426/6/1/12/pdf (PDF)

Abstract

Effective implementation of precision medicine will be enhanced by a thorough understanding of each patient’s genetic composition to better treat his or her presenting symptoms or mitigate the onset of disease. This ideally includes the sequence information of a complete genome for each individual. At Partners HealthCare Personalized Medicine, we have developed a clinical process for whole genome sequencing (WGS) with application in both healthy individuals and those with disease. In this manuscript, we will describe our bioinformatics strategy to efficiently process and deliver genomic data to geneticists for clinical interpretation. We describe the handling of data from FASTQ to the final variant list for clinical review for the final report. We will also discuss our methodology for validating this workflow and the cost implications of running WGS.

Keywords: clinical sequencing, WGS, NGS, next generation sequencing, bioinformatics, validation, precision medicine

Introduction

Precision medicine is becoming an increasing focus in medical research.[1] To achieve the resolution necessary to personalize clinical care, greater attention has been drawn towards higher resolution of the patient genome. Next generation sequencing (NGS) provided a cost-effective method for targeted sequencing of known disease genes at base pair resolution.[2] Moreover, the advent of exome sequencing enabled rapid discovery of genes causing Mendelian disorders. While gene panels and exome sequencing have proved fast and cost-effective for delivering genomic results back to the patient, these technologies are limited by our current knowledge of the exome, which changes over time. Additionally, the use of targeted capture may introduce biases to the data, including PCR duplicates, depth of coverage disparities, and failures at difficult to amplify target regions.[3]

Practical considerations such as sequencing costs, data processing and maintenance, and data analysis complexities are important considerations when a laboratory is considering a new NGS program. These issues are amplified in whole genome sequencing (WGS) due to the volume of the data and have long been barriers to entry for clinical laboratories looking to adopt WGS. Despite the ability of WGS to interrogate the entirety of the genome, clinical interpretation still often focuses on only 3% of the genome (i.e., exome data, pharmacogenomics risk variants, and single nucleotide variants associated with complex disease risk).[4][5][6][7] Therefore, WGS services may be overlooked for clinical applications as they trend towards increased costs and longer turnaround times due to a heavier computational load, increased number of variants for analysis, and larger data archives. However, the steadily decreasing cost of sequencing and storage now allow laboratories to consider genome sequencing. WGS, and more specifically PCR-free WGS, also decreases the need to re-sequence each time the coding sequences of targeted regions change, novel genes are discovered, or a new reference genome is released. The balance between cost, turnaround time, accuracy, and completeness has to be addressed when launching a WGS program. Here, we describe the workflow we adopted and the challenges we met supporting the bioinformatics of WGS in a clinical setting.

References

  1. Collins, F.S.; Varmus, H. (2015). "A new initiative on precision medicine". New England Journal of Medicine 372 (9): 793–5. doi:10.1056/NEJMp1500523. PMID 25635347. 
  2. Alfares, A.A.; Kelly, M.A.; McDermott, G. et al. (2015). "Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: Expanded panels offer limited additional sensitivity". Genetics in Medicine 17 (11): 880–8. doi:10.1038/gim.2014.205. PMID 25611685. 
  3. Harismendy, O.; Ng, P.C.; Strausberg, R.L. et al. (2009). "Evaluation of next generation sequencing platforms for population targeted sequencing studies". Genome Biology 10 (3): R32. doi:10.1186/gb-2009-10-3-r32. PMC PMC2691003. PMID 19327155. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691003. 
  4. Biesecker, L.G.; Mullikin, J.C.; Facio, F.M. et al. (2009). "The ClinSeq Project: Piloting large-scale genome sequencing for research in genomic medicine". Genome Research 19 (9): 1665-74. doi:10.1101/gr.092841.109. PMC PMC2752125. PMID 19602640. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752125. 
  5. Dewey, F.E.; Grove, M.E.; Pan, C. et al. (2014). "Clinical interpretation and implications of whole-genome sequencing". JAMA 311 (10): 1035-45. doi:10.1001/jama.2014.1717. PMC PMC4119063. PMID 24618965. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119063. 
  6. Jiang, Y.H.; Yuen, R.K.; Jin, X. et al. (2013). "Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing". American Journal of Human Genetics 93 (2): 249-63. doi:10.1016/j.ajhg.2013.06.012. PMC PMC3738824. PMID 23849776. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738824. 
  7. Lupski, J.R.; Reid, J.G.; Gonzaga-Jauregui, C. et al. (2010). "Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy". New England Journal of Medicine 362 (13): 1181-91. doi:10.1056/NEJMoa0908094. PMC PMC4036802. PMID 20220177. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036802. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added.