Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text.)
(Updated article of the week text)
 
(114 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Industry 4.0.png|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig2 Berezin PLoSCompBio23 19-12.png|240px]]</div>
'''"[[Journal:Cybersecurity impacts for artificial intelligence use within Industry 4.0|Cybersecurity impacts for artificial intelligence use within Industry 4.0]]"'''
'''"[[Journal:Ten simple rules for managing laboratory information|Ten simple rules for managing laboratory information]]"'''
 
[[Information]] is the cornerstone of [[research]], from experimental data/[[metadata]] and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging [[laboratory information management system]]s (LIMS) to transform this large information load into useful scientific findings. The development of [[mathematical model]]s that can predict the properties of biological systems is the holy grail of [[computational biology]]. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... ('''[[Journal:Ten simple rules for managing laboratory information|Full article...]]''')<br />


In today’s modern digital manufacturing landscape, new and emerging technologies can shape how an organization can compete, while others will view those technologies as a necessity to survive, as manufacturing has been identified as a critical infrastructure. Universities struggle to hire university professors that are adequately trained or willing to enter academia due to competitive salary offers in the industry. Meanwhile, the demand for people knowledgeable in fields such as [[artificial intelligence]], [[Informatics (academic field)|data science]], and [[cybersecurity]] continuously rises, with no foreseeable drop in demand in the next several years. This results in organizations deploying technologies with a staff that inadequately understands what new cybersecurity risks they are introducing into the company. This work examines how organizations can potentially mitigate some of the risk associated with integrating these new technologies and developing their workforce to be better prepared for looming changes in technological skill need. ('''[[Journal:Cybersecurity impacts for artificial intelligence use within Industry 4.0|Full article...]]''')<br />
<br />
''Recently featured'':
''Recently featured'':
{{flowlist |
{{flowlist |
* [[Journal:Cross-border data transfer regulation in China|Cross-border data transfer regulation in China]]
* [[Journal:Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology|Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology]]
* [[Journal:Data and information systems management for urban water infrastructure condition assessment|Data and information systems management for urban water infrastructure condition assessment]]
* [[Journal:Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study|Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study]]
* [[Journal:Diagnostic informatics: The role of digital health in diagnostic stewardship and the achievement of excellence, safety, and value|Diagnostic informatics: The role of digital health in diagnostic stewardship and the achievement of excellence, safety, and value]]
* [[Journal:Judgements of research co-created by generative AI: Experimental evidence|Judgements of research co-created by generative AI: Experimental evidence]]
}}
}}

Latest revision as of 18:03, 10 June 2024

Fig2 Berezin PLoSCompBio23 19-12.png

"Ten simple rules for managing laboratory information"

Information is the cornerstone of research, from experimental data/metadata and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems (LIMS) to transform this large information load into useful scientific findings. The development of mathematical models that can predict the properties of biological systems is the holy grail of computational biology. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... (Full article...)

Recently featured: