Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text)
(Updated article of the week text)
(37 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Tab2 Al-Jefri FrontInMedicine2018 5.jpg|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Mandrioli Molecules2019 24-11.png|240px]]</div>
'''"[[Journal:What Is health information quality? Ethical dimension and perception by users|What Is health information quality? Ethical dimension and perception by users]]"'''
'''"[[Journal:Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L.|Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L.]]"'''


The popularity of seeking health [[information]] online makes information quality (IQ) a public health issue. The present study aims at building a theoretical framework of health information quality (HIQ) that can be applied to websites and defines which IQ criteria are important for a website to be trustworthy and meet users' expectations. We have identified a list of HIQ criteria from existing tools and assessment criteria and elaborated them into a questionnaire that was promoted via social media and, mainly, the university. Responses (329) were used to rank the different criteria for their importance in trusting a website and to identify patterns of criteria using hierarchical cluster analysis. HIQ criteria were organized in five dimensions based on previous theoretical frameworks, as well as on how they cluster together in the questionnaire response. We could identify a top-ranking dimension (scientific completeness) that describes what the user is expecting to know from the websites (in particular: description of symptoms, treatments, side effects). ('''[[Journal:What Is health information quality? Ethical dimension and perception by users|Full article...]]''')<br />
[[wikipedia:Cannabis|Cannabis]] has regained much attention as a result of updated legislation authorizing many different uses, and it can be classified on the basis of the content of [[wikipedia:Tetrahydrocannabinol|Δ9-tetrahydrocannabinol]] (Δ9-THC), a psychotropic substance for which there are legal limitations in many countries. For this purpose, accurate qualitative and quantitative determination is essential. The relationship between THC and [[wikipedia:Cannabidiol|cannabidiol]] (CBD) is also significant, as the latter substance is endowed with many specific and non-psychoactive proprieties. For these reasons, it becomes increasingly important and urgent to utilize fast, easy, validated, and harmonized procedures for determination of [[wikipedia:Cannabinoid|cannabinoids]]. The procedure described herein allows rapid determination of 10 cannabinoids from the [[wikipedia:Inflorescence|inflorescences]] of ''Cannabis sativa'' L. by extraction with organic solvents. Separation and subsequent detection are by [[wikipedia:Reversed-phase chromatography|reversed-phase]] [[high-performance liquid chromatography]] with ultraviolet detector (RP-HPLC-UV). ('''[[Journal:Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L.|Full article...]]''')<br />
<br />
<br />
''Recently featured'':
''Recently featured'':
: ▪ [[Journal:SCADA system testbed for cybersecurity research using machine learning approach|SCADA system testbed for cybersecurity research using machine learning approach]]
: ▪ [[Journal:What is this sensor and does this app need access to it?|What is this sensor and does this app need access to it?]]
: ▪ [[Journal:Semantics for an integrative and immersive pipeline combining visualization and analysis of molecular data|Semantics for an integrative and immersive pipeline combining visualization and analysis of molecular data]]
: ▪ [[Journal:AI meets exascale computing: Advancing cancer research with large-scale high-performance computing|AI meets exascale computing: Advancing cancer research with large-scale high-performance computing]]
: ▪ [[Journal:A view of programming scalable data analysis: From clouds to exascale|A view of programming scalable data analysis: From clouds to exascale]]
: ▪ [[Journal:Building infrastructure for African human genomic data management|Building infrastructure for African human genomic data management]]

Revision as of 16:43, 20 January 2020

Fig1 Mandrioli Molecules2019 24-11.png

"Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L."

Cannabis has regained much attention as a result of updated legislation authorizing many different uses, and it can be classified on the basis of the content of Δ9-tetrahydrocannabinol (Δ9-THC), a psychotropic substance for which there are legal limitations in many countries. For this purpose, accurate qualitative and quantitative determination is essential. The relationship between THC and cannabidiol (CBD) is also significant, as the latter substance is endowed with many specific and non-psychoactive proprieties. For these reasons, it becomes increasingly important and urgent to utilize fast, easy, validated, and harmonized procedures for determination of cannabinoids. The procedure described herein allows rapid determination of 10 cannabinoids from the inflorescences of Cannabis sativa L. by extraction with organic solvents. Separation and subsequent detection are by reversed-phase high-performance liquid chromatography with ultraviolet detector (RP-HPLC-UV). (Full article...)

Recently featured:

What is this sensor and does this app need access to it?
AI meets exascale computing: Advancing cancer research with large-scale high-performance computing
Building infrastructure for African human genomic data management