Difference between revisions of "Template:COVID-19 Testing, Reporting, and Information Management in the Laboratory/Adding COVID-19 and other virus testing to your laboratory/What methodologies will you use?"

From LIMSWiki
Jump to navigationJump to search
(Created as needed.)
 
(November updates)
Line 9: Line 9:
* What vendors and consultants are out there to help get equipped? Some vendors have very specific solutions, whereas others may have a broader range of offerings.
* What vendors and consultants are out there to help get equipped? Some vendors have very specific solutions, whereas others may have a broader range of offerings.


These questions and more are addressed this chapter.
These questions and more are addressed in this chapter.


===3.1 What methodologies will you use?===
===3.1 What methodologies will you use?===
Line 17: Line 17:
PCR technology has advanced to the point where it is more efficient and user-friendly than prior, yet "the high cost of the instruments, servicing contracts, and reagents pose major challenges for the market, especially to the price-sensitive academics."<ref name="MWPoly20">{{cite web |url=https://www.marketwatch.com/press-release/polymerase-chain-reaction-market-sector-analysis-report-regional-outlook-competitive-share-forecast---2023-2020-06-23 |title=Polymerase Chain Reaction Market Sector Analysis Report, Regional Outlook & Competitive Share & Forecast - 2023 |author=Kenneth Research |work=MarketWatch |date=23 June 2020 |accessdate=06 August 2020}}</ref> Writing about the thirty-fifth anniversary of PCR in 2018, science writer Alan Dove not only highlighted these cost issues but also the size and energy requirements for running the equipment. "As a result, one of the defining techniques of modern molecular biology has remained stubbornly inaccessible to educators and unusable in many remote locations."<ref name="DovePCR18">{{cite journal |title=PCR: Thirty-five years and counting |journal=Science |author=Dove, A. |volume=360 |issue=6389 |pages=670–672 |year=2018 |doi=10.1126/science.360.6389.673-c}}</ref> Various efforts have been made over the years to bring costs down by modifying how heating and temperature control are performed<ref name="WongARapid15">{{cite journal |title=A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings |journal=PLoS One |author=Wong, G.; Wong, I. Chan, K. et al. |volume=10 |issue=7 |at=e0131701 |year=2015 |doi=10.1371/journal.pone.0131701}}</ref><ref name="KuznetsovDIYbio15">{{cite journal |title=DIYbio Things: Open Source Biology Tools as Platforms for Hybrid Knowledge Production and Scientific Participation |journal=Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems |author=Kuznetsov, S.; Doonan, C.; Wilson, N. et al. |pages=4065–68 |year=2015 |doi=10.1145/2702123.2702235}}</ref><ref name="NortonPhila16">{{cite web |url=https://www.bizjournals.com/philadelphia/news/2016/05/11/government-contract-biomeme-hiring-med-tech.html |title=Phila. med tech startup working on multimillion dollar government contract |author=Norton, D. |work=Philadelphia Business Journal |date=11 May 2016 |accessdate=06 August 2020}}</ref><ref name="AnLow20">{{cite journal |title=Low-Cost Battery-Powered and User-Friendly Real-Time Quantitative PCR System for the Detection of Multigene |journal=Micromachines |author=An, J.; Jiang, Y.; Shi, B. et al. |volume=11 |at=435 |year=2020 |doi=10.3390/mi11040435}}</ref>, but many of those system aren't typically optimal during a pandemic when turnaround time is critical.
PCR technology has advanced to the point where it is more efficient and user-friendly than prior, yet "the high cost of the instruments, servicing contracts, and reagents pose major challenges for the market, especially to the price-sensitive academics."<ref name="MWPoly20">{{cite web |url=https://www.marketwatch.com/press-release/polymerase-chain-reaction-market-sector-analysis-report-regional-outlook-competitive-share-forecast---2023-2020-06-23 |title=Polymerase Chain Reaction Market Sector Analysis Report, Regional Outlook & Competitive Share & Forecast - 2023 |author=Kenneth Research |work=MarketWatch |date=23 June 2020 |accessdate=06 August 2020}}</ref> Writing about the thirty-fifth anniversary of PCR in 2018, science writer Alan Dove not only highlighted these cost issues but also the size and energy requirements for running the equipment. "As a result, one of the defining techniques of modern molecular biology has remained stubbornly inaccessible to educators and unusable in many remote locations."<ref name="DovePCR18">{{cite journal |title=PCR: Thirty-five years and counting |journal=Science |author=Dove, A. |volume=360 |issue=6389 |pages=670–672 |year=2018 |doi=10.1126/science.360.6389.673-c}}</ref> Various efforts have been made over the years to bring costs down by modifying how heating and temperature control are performed<ref name="WongARapid15">{{cite journal |title=A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings |journal=PLoS One |author=Wong, G.; Wong, I. Chan, K. et al. |volume=10 |issue=7 |at=e0131701 |year=2015 |doi=10.1371/journal.pone.0131701}}</ref><ref name="KuznetsovDIYbio15">{{cite journal |title=DIYbio Things: Open Source Biology Tools as Platforms for Hybrid Knowledge Production and Scientific Participation |journal=Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems |author=Kuznetsov, S.; Doonan, C.; Wilson, N. et al. |pages=4065–68 |year=2015 |doi=10.1145/2702123.2702235}}</ref><ref name="NortonPhila16">{{cite web |url=https://www.bizjournals.com/philadelphia/news/2016/05/11/government-contract-biomeme-hiring-med-tech.html |title=Phila. med tech startup working on multimillion dollar government contract |author=Norton, D. |work=Philadelphia Business Journal |date=11 May 2016 |accessdate=06 August 2020}}</ref><ref name="AnLow20">{{cite journal |title=Low-Cost Battery-Powered and User-Friendly Real-Time Quantitative PCR System for the Detection of Multigene |journal=Micromachines |author=An, J.; Jiang, Y.; Shi, B. et al. |volume=11 |at=435 |year=2020 |doi=10.3390/mi11040435}}</ref>, but many of those system aren't typically optimal during a pandemic when turnaround time is critical.


Amidst the pandemic, additional challenges also exist to those wanting to conduct PCR testing for COVID-19 and other viruses. As was discussed at the end of the previous chapter, supplies of reagents and consumables are not particularly robust mid-pandemic, with shortages being reported since March 2020.<ref name="HerperShortage20">{{cite web |url=https://www.statnews.com/2020/03/10/shortage-crucial-chemicals-us-coronavirus-testing/ |title=Shortage of crucial chemicals creates new obstacle to U.S. coronavirus testing |work=STAT |author=Herper, M.; Branswell, H. |date=10 March 2020 |accessdate=10 April 2020}}</ref><ref name="HaleQiagen20">{{cite web |url=https://www.fiercebiotech.com/medtech/qiagen-aims-to-more-than-quadruple-its-covid-19-reagent-production-6-weeks |title=Qiagen aims to more than quadruple its COVID-19 reagent production in 6 weeks |work=Fierce Biotech |author=Hale, C. |date=18 March 2020 |accessdate=10 April 2020}}</ref><ref name="MehtaMystery20">{{cite web |url=https://www.chemistryworld.com/mystery-surrounds-uk-claim-of-covid-19-test-reagent-shortage/4011457.article |title=Mystery surrounds UK claim of Covid-19 test reagent ‘shortage’ |work=Chemistry World |author=Mehta, A. |date=03 April 2020 |accessdate=10 April 2020}}</ref><ref name="RocheIrish20">{{cite web |url=https://www.irishtimes.com/news/science/irish-scientists-develop-reagent-in-effort-to-ease-covid-19-testing-delays-1.4223897 |title=Irish scientists develop reagent in effort to ease Covid-19 testing delays |work=The Irish Times |author=Roche, B. |date=08 April 2020 |accessdate=10 April 2020}}</ref><ref name="PadmaEfforts20">{{cite web |url=https://www.chemistryworld.com/news/efforts-to-combat-covid-19-in-india-hit-by-imported-reagent-shortages/4011718.article#/ |title=Efforts to combat Covid-19 in India hit by imported reagent shortages |author=Padma, T.V. |work=Chemistry World |date=13 May 2020 |accessdate=19 May 2020}}</ref><ref name="DavidSurvey20">{{cite web |url=https://abcnews.go.com/Health/survey-shows-resources-covid-19-diagnostic-testing-limited/story?id=71341885 |title=Survey shows resources for COVID-19 diagnostic testing still limited months later |author=David, E.; Farber, S.E. |work=ABC News |date=20 June 2020 |accessdate=08 July 2020}}</ref><ref name="JohnsonNCLabs20">{{cite web |url=https://patch.com/north-carolina/charlotte/nc-labs-facing-shortages-covid-19-testing-chemicals |title=NC Labs Facing Shortages In COVID-19 Testing Chemicals |author=Johnson, K. |work=Patch |date=02 July 2020 |accessdate=08 July 2020}}</ref><ref name="MervoshItsLike20">{{cite web |url=https://www.nytimes.com/2020/08/04/us/virus-testing-delays.html |title=‘It’s Like Having No Testing’: Coronavirus Test Results Are Still Delayed |author=Mervosh, S.; Fernandez, M. |work=The New York Times |date=04 August 2020 |accessdate=05 August 2020}}</ref><ref name="CourageCovid20">{{cite web |url=https://www.vox.com/2020/7/31/21336212/covid-19-test-results-delays |title=Should we be testing fewer people to stop the spread of Covid-19? |author=Courage, K.H. |work=Vox |date=31 July 2020 |accessdate=05 August 2020}}</ref> These shortages may eventually work themselves out, but they highlight the need for other varying methods that don't necessarily depend on the same reagents and consumables that are in short supply.
Amidst the pandemic, additional challenges also exist to those wanting to conduct PCR testing for COVID-19 and other viruses. As was discussed at the end of the previous chapter, supplies of reagents and consumables are not particularly robust mid-pandemic, with shortages being reported since March 2020.<ref name="HerperShortage20">{{cite web |url=https://www.statnews.com/2020/03/10/shortage-crucial-chemicals-us-coronavirus-testing/ |title=Shortage of crucial chemicals creates new obstacle to U.S. coronavirus testing |work=STAT |author=Herper, M.; Branswell, H. |date=10 March 2020 |accessdate=10 April 2020}}</ref><ref name="HaleQiagen20">{{cite web |url=https://www.fiercebiotech.com/medtech/qiagen-aims-to-more-than-quadruple-its-covid-19-reagent-production-6-weeks |title=Qiagen aims to more than quadruple its COVID-19 reagent production in 6 weeks |work=Fierce Biotech |author=Hale, C. |date=18 March 2020 |accessdate=10 April 2020}}</ref><ref name="MehtaMystery20">{{cite web |url=https://www.chemistryworld.com/mystery-surrounds-uk-claim-of-covid-19-test-reagent-shortage/4011457.article |title=Mystery surrounds UK claim of Covid-19 test reagent ‘shortage’ |work=Chemistry World |author=Mehta, A. |date=03 April 2020 |accessdate=10 April 2020}}</ref><ref name="RocheIrish20">{{cite web |url=https://www.irishtimes.com/news/science/irish-scientists-develop-reagent-in-effort-to-ease-covid-19-testing-delays-1.4223897 |title=Irish scientists develop reagent in effort to ease Covid-19 testing delays |work=The Irish Times |author=Roche, B. |date=08 April 2020 |accessdate=10 April 2020}}</ref><ref name="PadmaEfforts20">{{cite web |url=https://www.chemistryworld.com/news/efforts-to-combat-covid-19-in-india-hit-by-imported-reagent-shortages/4011718.article#/ |title=Efforts to combat Covid-19 in India hit by imported reagent shortages |author=Padma, T.V. |work=Chemistry World |date=13 May 2020 |accessdate=19 May 2020}}</ref><ref name="DavidSurvey20">{{cite web |url=https://abcnews.go.com/Health/survey-shows-resources-covid-19-diagnostic-testing-limited/story?id=71341885 |title=Survey shows resources for COVID-19 diagnostic testing still limited months later |author=David, E.; Farber, S.E. |work=ABC News |date=20 June 2020 |accessdate=08 July 2020}}</ref><ref name="JohnsonNCLabs20">{{cite web |url=https://patch.com/north-carolina/charlotte/nc-labs-facing-shortages-covid-19-testing-chemicals |title=NC Labs Facing Shortages In COVID-19 Testing Chemicals |author=Johnson, K. |work=Patch |date=02 July 2020 |accessdate=08 July 2020}}</ref><ref name="MervoshItsLike20">{{cite web |url=https://www.nytimes.com/2020/08/04/us/virus-testing-delays.html |title=‘It’s Like Having No Testing’: Coronavirus Test Results Are Still Delayed |author=Mervosh, S.; Fernandez, M. |work=The New York Times |date=04 August 2020 |accessdate=05 August 2020}}</ref><ref name="CourageCovid20">{{cite web |url=https://www.vox.com/2020/7/31/21336212/covid-19-test-results-delays |title=Should we be testing fewer people to stop the spread of Covid-19? |author=Courage, K.H. |work=Vox |date=31 July 2020 |accessdate=05 August 2020}}</ref><ref name="ASMSupply20">{{cite web |url=https://asm.org/Articles/2020/September/Clinical-Microbiology-Supply-Shortage-Collecti-1 |title=Supply Shortages Impacting COVID-19 and Non-COVID Testing |author=American Society for Microbiology |publisher=American Society for Microbiology |date=09 November 2020 |accessdate=18 November 2020}}</ref><ref name="AbbottCovid20">{{cite web |url=https://www.wsj.com/articles/covid-19-testing-saps-supplies-needed-for-other-medical-tests-11604926800 |title=Covid-19 Testing Saps Supplies Needed for Other Medical Tests |author=Abbott, B.; Krouse, S. |work=The Wall Street Journal |date=09 November 2020 |accessdate=18 November 2020}}</ref> These shortages may eventually work themselves out, but they highlight the need for other varying methods that don't necessarily depend on the same reagents and consumables that are in short supply.


For those labs wishing to adopt PCR testing of viruses—particularly COVID-19—into their workflow while providing reasonable turnaround times, all is not lost. However, careful planning is required. For example, you'll want to keep in mind that some PCR machines require vendor-specific reagents. If you're going to acquire a particular instrument, you'll want to do due diligence by verifying not only the supported reagents but also those reagents' overall availability (real and projected). You'll also want to consider factors such as anticipated workload (tests per day), what your workflow will look like, and how to balance overall investment with the need for reasonable turnaround times.  
For those labs wishing to adopt PCR testing of viruses—particularly COVID-19—into their workflow while providing reasonable turnaround times, all is not lost. However, careful planning is required. For example, you'll want to keep in mind that some PCR machines require vendor-specific reagents. If you're going to acquire a particular instrument, you'll want to do due diligence by verifying not only the supported reagents but also those reagents' overall availability (real and projected). You'll also want to consider factors such as anticipated workload (tests per day), what your workflow will look like, and how to balance overall investment with the need for reasonable turnaround times.  


As of August 2020, an increasing body of research is being produced suggesting ways to improve turnaround times with PCR testing for COVID-19, with many research efforts focusing on cutting out RNA extraction steps entirely. Alcoba-Florez ''et al.'' [[Journal:Fast SARS-CoV-2 detection by RT-qPCR in preheated nasopharyngeal swab samples|propose]] direct heating of the sample-containing nasopharyngeal swab at 70 °C for 10 minutes in place of RNA extraction.<ref name="Alcoba-FlorezFast20">{{cite journal |title=Fast SARS-CoV-2 detection by RT-qPCR in preheated nasopharyngeal swab samples |journal=International Journal of Infectious Diseases |author=Alcoba-Florez, J.; González-Montelongo, R.; Íñigo-Campos, A.; García-Martínezde Artola, D.; Gil-Campesino, H.;<br />The Microbiology Technical Support Team; Ciuffreda, L.; Valenzuela-Fernández, A.; Flores, C. |volume=97 |pages=66–68 |year=2020 |doi=10.1016/j.ijid.2020.05.099}}</ref> Adams ''et al.'' have proposed an "adaptive PCR" method using a non-standard reagent mix that skips RNA extraction and can act "as a contingency for resource‐limited settings around the globe."<ref name="ShapiroStream20">{{cite web |url=https://news.vanderbilt.edu/2020/07/29/streamlined-diagnostic-approach-to-covid-19-can-avoid-potential-testing-logjam/ |title=Streamlined diagnostic approach to COVID-19 can avoid potential testing logjam |author=Shapiro, M. |work=Research News @ Vanderbilt |date=29 July 2020 |accessdate=06 August 2020}}</ref><ref name="AdamsCOVID20">{{cite journal |title=COVID‐19 diagnostics for resource‐limited settings: Evaluation of “unextracted” qRT‐PCR |journal=Journal of Medical Virology |author=Adams, N.M.; Leelawong, M.; Benton, A. et al. |year=2020 |doi=10.1002/jmv.26328}}</ref> Wee ''et al.'' skip RNA extraction and nucleic acid purification by using a single-tube homogeneous reaction method run on a lightweight, portable thermocycler.<ref name="MeharImproving20">{{cite web |url=https://www.techexplorist.com/improving-speed-gold-standard-covid-19-diagnostic-test/34069/ |title=Improving the speed of gold-standard COVID-19 diagnostic test |author=Mehar, P. |work=Tech Explorist |date=27 July 2020 |accessdate=06 August 2020}}</ref><ref name="WeeRapid20">{{cite journal |title=Rapid Direct Nucleic Acid Amplification Test without RNA Extraction for SARS-CoV-2 Using a Portable PCR Thermocycler |journal=Genes |author=Wee, S.K.; Sivalingam, S.P.; Yap, E.P.H. |volume=11 |issue=6 |at=664 |year=2020 |doi=10.3390/genes11060664}}</ref> Other innovations include tweaking reagents and enzymes to work with one step, skipping the reverse transcription step,<ref name="CSIRFaster20">{{cite web |url=https://www.engineeringnews.co.za/article/faster-local-covid-19-test-kits-could-be-ready-by-year-end-2020-07-30/ |title=Faster, local COVID-19 test kits could be ready by year-end |author=Council for Scientific and Industrial Research |work=Engineering News |publisher=Creamer Media |date=30 July 2020 |accessdate=07 August 2020}}</ref> and using saliva-based molecular testing that skips RNA extraction.<ref name="RanoaSaliva20">{{cite journal |title=Saliva-Based Molecular Testing for SARS-CoV-2 that Bypasses RNA Extraction |journal=bioRxiv |author=Ranoa, D.R.E.; Holland, R.L.; Alnaji, F.G. et al. |year=2020 |doi=10.1101/2020.06.18.159434}}</ref><ref name="ThomasFast20">{{cite web |url=https://www.news-medical.net/news/20200806/Fast-cheap-and-easy-COVID-19-test-from-Yale.aspx |title=Fast, cheap and easy COVID-19 test from Yale |author=Thomas, L. |work=News Medical - Life Sciences |date=06 August 2020 |accessdate=16 August 2020}}</ref>
An increasing body of research is being produced suggesting ways to improve turnaround times with PCR testing for COVID-19, with many research efforts focusing on cutting out RNA extraction steps entirely. Alcoba-Florez ''et al.'' [[Journal:Fast SARS-CoV-2 detection by RT-qPCR in preheated nasopharyngeal swab samples|propose]] direct heating of the sample-containing nasopharyngeal swab at 70 °C for 10 minutes in place of RNA extraction.<ref name="Alcoba-FlorezFast20">{{cite journal |title=Fast SARS-CoV-2 detection by RT-qPCR in preheated nasopharyngeal swab samples |journal=International Journal of Infectious Diseases |author=Alcoba-Florez, J.; González-Montelongo, R.; Íñigo-Campos, A.; García-Martínezde Artola, D.; Gil-Campesino, H.;<br />The Microbiology Technical Support Team; Ciuffreda, L.; Valenzuela-Fernández, A.; Flores, C. |volume=97 |pages=66–68 |year=2020 |doi=10.1016/j.ijid.2020.05.099}}</ref> Adams ''et al.'' have proposed an "adaptive PCR" method using a non-standard reagent mix that skips RNA extraction and can act "as a contingency for resource‐limited settings around the globe."<ref name="ShapiroStream20">{{cite web |url=https://news.vanderbilt.edu/2020/07/29/streamlined-diagnostic-approach-to-covid-19-can-avoid-potential-testing-logjam/ |title=Streamlined diagnostic approach to COVID-19 can avoid potential testing logjam |author=Shapiro, M. |work=Research News @ Vanderbilt |date=29 July 2020 |accessdate=06 August 2020}}</ref><ref name="AdamsCOVID20">{{cite journal |title=COVID‐19 diagnostics for resource‐limited settings: Evaluation of “unextracted” qRT‐PCR |journal=Journal of Medical Virology |author=Adams, N.M.; Leelawong, M.; Benton, A. et al. |year=2020 |doi=10.1002/jmv.26328}}</ref> Wee ''et al.'' skip RNA extraction and nucleic acid purification by using a single-tube homogeneous reaction method run on a lightweight, portable thermocycler.<ref name="MeharImproving20">{{cite web |url=https://www.techexplorist.com/improving-speed-gold-standard-covid-19-diagnostic-test/34069/ |title=Improving the speed of gold-standard COVID-19 diagnostic test |author=Mehar, P. |work=Tech Explorist |date=27 July 2020 |accessdate=06 August 2020}}</ref><ref name="WeeRapid20">{{cite journal |title=Rapid Direct Nucleic Acid Amplification Test without RNA Extraction for SARS-CoV-2 Using a Portable PCR Thermocycler |journal=Genes |author=Wee, S.K.; Sivalingam, S.P.; Yap, E.P.H. |volume=11 |issue=6 |at=664 |year=2020 |doi=10.3390/genes11060664}}</ref> Other innovations include tweaking reagents and enzymes to work with one step, skipping the reverse transcription step,<ref name="CSIRFaster20">{{cite web |url=https://www.engineeringnews.co.za/article/faster-local-covid-19-test-kits-could-be-ready-by-year-end-2020-07-30/ |title=Faster, local COVID-19 test kits could be ready by year-end |author=Council for Scientific and Industrial Research |work=Engineering News |publisher=Creamer Media |date=30 July 2020 |accessdate=07 August 2020}}</ref> and using saliva-based molecular testing that skips RNA extraction.<ref name="RanoaSaliva20">{{cite journal |title=Saliva-Based Molecular Testing for SARS-CoV-2 that Bypasses RNA Extraction |journal=bioRxiv |author=Ranoa, D.R.E.; Holland, R.L.; Alnaji, F.G. et al. |year=2020 |doi=10.1101/2020.06.18.159434}}</ref><ref name="ThomasFast20">{{cite web |url=https://www.news-medical.net/news/20200806/Fast-cheap-and-easy-COVID-19-test-from-Yale.aspx |title=Fast, cheap and easy COVID-19 test from Yale |author=Thomas, L. |work=News Medical - Life Sciences |date=06 August 2020 |accessdate=16 August 2020}}</ref>


'''Saliva as a specimen'''
'''Saliva as a specimen'''


The saliva molecular tests in particular are intriguing. Talk of the potential utility of using saliva as a specimen for COVID-19 was occurring as early as April<ref name="XuSaliva20">{{cite journal |title=Saliva: Potential diagnostic value and transmission of 2019-nCoV |journal=International Journal of Oral Science |author=Xu, R.; Cui, B.; Duan, X. et al. |volume=12 |at=11 |year=2020 |doi=10.1038/s41368-020-0080-z}}</ref><ref name="GreenwoodSaliva20">{{cite web |url=https://news.yale.edu/2020/04/24/saliva-samples-preferable-deep-nasal-swabs-testing-covid-19 |title=Saliva samples preferable to deep nasal swabs for testing COVID-19 |author=Greenwood, M. |work=YaleNews |date=24 April 2020 |accessdate=01 May 2020}}</ref>, and the first saliva-based COVID-19 test, produced by Spectrum Solutions in cooperation with RUCDR Infinite Biologics Laboratory<ref name="SSFirst20">{{cite web |url=https://spectrumsolution.com/fda-authorized-covid-19-updates/ |title=First saliva collection device FDA EUA authorized for COVID-19 testing |publisher=Spectrum Solutions |date=2020 |accessdate=16 August 2020}}</ref> and Vault Health<ref name="VHVault20">{{cite web |url=https://www.prnewswire.com/news-releases/vault-health-launches-first-of-its-kind-saliva-based-fda-eua-approved-test-for-covid-19-301039633.html |title=Vault Health Launches First-of-its-Kind Saliva-based FDA EUA Approved Test for COVID-19 |author=Vault Health |work=PR Newswire |date=14 April 2020 |accessdate=01 May 2020}}</ref>, was given an FDA EUA in April. On August 15, Yale School of Public Health was given an EUA for it SalivaDirect molecular test. Although still PCR-based (and a CLIA high-complexity test), SalivaDirect is being touted as a means to improve specimen collection safety, consume fewer reagents, prove compatible with high-throughput workflow, and cut overall turnaround time. Not only is saliva easier to collect and safer for healthcare staff, the test is essentially "open sourced," not requiring proprietary equipment from Yale, making the test more flexible by being validated to reliably function with a wider array of reagents and instruments.<ref name="GallagherFDA20">{{cite web |url=https://www.contagionlive.com/news/fda-grants-emergency-covid19-authorization-yale-open-source-method-saliva-testing |title=FDA Grants Emergency COVID-19 Authorization to Yale's Open Source Method of Saliva Testing |author=Gallagher, G.M. |work=ContagionLive |date=15 August 2020 |accessdate=16 August 2020}}</ref><ref name="ZillgittFDA20">{{cite web |url=https://www.usatoday.com/story/sports/nba/2020/08/15/fda-approves-covid-19-saliva-test-developed-yale-nba-nbpa-aid/5590452002/ |title=FDA approves COVID-19 saliva test developed at Yale in partnership with the NBA, NBPA |author=Zillgitt, J. |work=USA Today |date=15 August 2020 |accessdate=16 August 2020}}</ref> When compared to using a nasopharyngeal swab specimen using the ThermoFisher Scientific TaqPath COVID-19 combo kit, results were comparable 94.1% of the time.<ref name="ThomasFast20" /> While sensitivity and specificity may be slightly less comparable to other PCR options<ref name="WeisslederCOVID20">{{cite web |url=https://csb.mgh.harvard.edu/covid |title=COVID-19 Diagnostics in Context |author=Weissleder, R.; Lee, H.; Ko, J. et al. |publisher=Harvard Center for Systems Biology |date=15 August 2020 |accessdate=16 August 2020}}</ref>, the overall advantages during reagent shortages and a definitive need for broader testing likely outweigh the slightly lesser sensitivity and specificity.
The saliva molecular tests in particular are intriguing. Talk of the potential utility of using saliva as a specimen for COVID-19 was occurring as early as April<ref name="XuSaliva20">{{cite journal |title=Saliva: Potential diagnostic value and transmission of 2019-nCoV |journal=International Journal of Oral Science |author=Xu, R.; Cui, B.; Duan, X. et al. |volume=12 |at=11 |year=2020 |doi=10.1038/s41368-020-0080-z}}</ref><ref name="GreenwoodSaliva20">{{cite web |url=https://news.yale.edu/2020/04/24/saliva-samples-preferable-deep-nasal-swabs-testing-covid-19 |title=Saliva samples preferable to deep nasal swabs for testing COVID-19 |author=Greenwood, M. |work=YaleNews |date=24 April 2020 |accessdate=01 May 2020}}</ref>, and the first saliva-based COVID-19 test, produced by Spectrum Solutions in cooperation with RUCDR Infinite Biologics Laboratory<ref name="SSFirst20">{{cite web |url=https://spectrumsolution.com/fda-authorized-covid-19-updates/ |title=First saliva collection device FDA EUA authorized for COVID-19 testing |publisher=Spectrum Solutions |date=2020 |accessdate=16 August 2020}}</ref> and Vault Health<ref name="VHVault20">{{cite web |url=https://www.prnewswire.com/news-releases/vault-health-launches-first-of-its-kind-saliva-based-fda-eua-approved-test-for-covid-19-301039633.html |title=Vault Health Launches First-of-its-Kind Saliva-based FDA EUA Approved Test for COVID-19 |author=Vault Health |work=PR Newswire |date=14 April 2020 |accessdate=01 May 2020}}</ref>, was given an FDA EUA in April. On August 15, Yale School of Public Health was given an EUA for it SalivaDirect molecular test. Although still PCR-based (and a CLIA high-complexity test), SalivaDirect is being touted as a means to improve specimen collection safety, consume fewer reagents, prove compatible with high-throughput workflow, and cut overall turnaround time. Not only is saliva easier to collect and safer for healthcare staff, the test is essentially "open sourced," not requiring proprietary equipment from Yale, making the test more flexible by being validated to reliably function with a wider array of reagents and instruments.<ref name="GallagherFDA20">{{cite web |url=https://www.contagionlive.com/news/fda-grants-emergency-covid19-authorization-yale-open-source-method-saliva-testing |title=FDA Grants Emergency COVID-19 Authorization to Yale's Open Source Method of Saliva Testing |author=Gallagher, G.M. |work=ContagionLive |date=15 August 2020 |accessdate=16 August 2020}}</ref><ref name="ZillgittFDA20">{{cite web |url=https://www.usatoday.com/story/sports/nba/2020/08/15/fda-approves-covid-19-saliva-test-developed-yale-nba-nbpa-aid/5590452002/ |title=FDA approves COVID-19 saliva test developed at Yale in partnership with the NBA, NBPA |author=Zillgitt, J. |work=USA Today |date=15 August 2020 |accessdate=16 August 2020}}</ref> When compared to using a nasopharyngeal swab specimen using the ThermoFisher Scientific TaqPath COVID-19 combo kit, results were comparable 94.1% of the time.<ref name="ThomasFast20" /> While sensitivity and specificity may be slightly less comparable to other PCR options<ref name="WeisslederCOVID20">{{cite web |url=https://csb.mgh.harvard.edu/covid |title=COVID-19 Diagnostics in Context |author=Weissleder, R.; Lee, H.; Ko, J. et al. |publisher=Harvard Center for Systems Biology |date=15 August 2020 |accessdate=16 August 2020}}</ref>, the overall advantages during reagent shortages and a definitive need for broader testing likely outweigh the slightly lesser sensitivity and specificity. As of November 2020, public health agencies in Arizona and Minnesota have already begun running trials of free saliva-based molecular testing.<ref name="ParsonsPlaces20">{{cite web |url=https://www.azfamily.com/news/continuing_coverage/coronavirus_coverage/places-with-saliva-based-covid-testing-expecting-influx-of-people/article_76ac95c4-26b5-11eb-b34e-3728b1308927.html |title=Places with saliva-based COVID testing expecting influx of people |author=Parsons, J. |work=AZFamily |date=14 November 2020 |accessdate=19 November 2020}}</ref><ref name="MDoHState20">{{cite web |url=https://www.health.state.mn.us/news/pressrel/2020/covid102220.html |title=State launches pilot of COVID-19 test at home saliva program |author=Minnesota Department of Health |publisher=Minnesota Department of Health |date=22 October 2020}}</ref>


====3.1.2 Pooled testing====
====3.1.2 Pooled testing====
Line 33: Line 33:


====3.1.3 Rapid antigen testing====
====3.1.3 Rapid antigen testing====
As mentioned in the previous chapter, the benefits of antigen testing For COVID-19 and other viral infections are 1. specimen collection can typically be done with a simple nasal swab rather than a more invasive [[nasopharyngeal swab]], 2. testing is more rapid and convenient, and 3. it takes some pressure off the PCR supply chain. However, antigen testing only tests what's there, rather than amplifying the amount, resulting in generally lower sensitivities.<ref name="ServiceRadical2020">{{cite journal |title=Radical shift in COVID-19 testing needed to reopen schools and businesses, researchers say |journal=Science |author=Service, R.F. |year=2020 |doi=10.1126/science.abe1546}}</ref><ref name="GuglielmiTheExp20">{{cite journal |title=The explosion of new coronavirus tests that could help to end the pandemic |journal=Nature |author=Guglielmi, G. |volume=583 |pages=506–09 |year=2020 |doi=10.1038/d41586-020-02140-8}}</ref> As such, the real utility of antigen testing, despite its lower sensitivity, appears to be surveillance situations where a large group of individuals who are at risk can be screened at regularly scheduled intervals of two to four days. If your lab is able to support this sort of testing, then this type of testing may be an option. However, as of August 2020, only three vendors have EUAs for antigen diagnostic tests: Quidel Corporation; Becton, Dickinson and Company; and LumiraDx UK Ltd.<ref name="FDAEmerg20">{{cite web |url=https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas |title=In Vitro Diagnostics EUAs |publisher=U.S. Food and Drug Administration |date=11 August 2020 |accessdate=12 August 2020}}</ref> With six U.S. states already contracted to purchase hundreds of thousands of two of those companies' test kits<ref name="ClarkCOVID20">{{cite web |url=https://www.medpagetoday.com/infectiousdisease/covid19/87930 |title=COVID Antigen Tests: Coming to Case Counts Near You? |author=Clark, C. |work=MedPage Today |date=06 August 2020 |accessdate=07 August 2020}}</ref><ref name="MervoshItsLike20">{{cite web |url=https://www.nytimes.com/2020/08/04/us/virus-testing-delays.html |title=‘It’s Like Having No Testing’: Coronavirus Test Results Are Still Delayed |author=Mervosh, S.; Fernandez, M. |work=The New York Times |date=04 August 2020 |accessdate=05 August 2020}}</ref>, it's not clear how well they'll manage to meet demand.
As mentioned in the previous chapter, the benefits of antigen testing For COVID-19 and other viral infections are 1. specimen collection can typically be done with a simple nasal swab rather than a more invasive [[nasopharyngeal swab]], 2. testing is more rapid and convenient, and 3. it takes some pressure off the PCR supply chain. However, antigen testing only tests what's there, rather than amplifying the amount, resulting in generally lower sensitivities.<ref name="ServiceRadical2020">{{cite journal |title=Radical shift in COVID-19 testing needed to reopen schools and businesses, researchers say |journal=Science |author=Service, R.F. |year=2020 |doi=10.1126/science.abe1546}}</ref><ref name="GuglielmiTheExp20">{{cite journal |title=The explosion of new coronavirus tests that could help to end the pandemic |journal=Nature |author=Guglielmi, G. |volume=583 |pages=506–09 |year=2020 |doi=10.1038/d41586-020-02140-8}}</ref> As such, the real utility of antigen testing, despite its lower sensitivity, appears to be surveillance situations where a large group of individuals who are at risk can be screened at regularly scheduled intervals of two to four days. If your lab is able to support this sort of testing, then this type of testing may be an option. As of November 2020, six vendors have EUAs for antigen diagnostic tests.<ref name="FDAEmerg20">{{cite web |url=https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas |title=In Vitro Diagnostics EUAs |publisher=U.S. Food and Drug Administration |date=17 November 2020 |accessdate=19 November 2020}}</ref> With six U.S. states already contracted to purchase hundreds of thousands of two of those companies' test kits<ref name="ClarkCOVID20">{{cite web |url=https://www.medpagetoday.com/infectiousdisease/covid19/87930 |title=COVID Antigen Tests: Coming to Case Counts Near You? |author=Clark, C. |work=MedPage Today |date=06 August 2020 |accessdate=07 August 2020}}</ref><ref name="MervoshItsLike20">{{cite web |url=https://www.nytimes.com/2020/08/04/us/virus-testing-delays.html |title=‘It’s Like Having No Testing’: Coronavirus Test Results Are Still Delayed |author=Mervosh, S.; Fernandez, M. |work=The New York Times |date=04 August 2020 |accessdate=05 August 2020}}</ref>, it remains to be seen how well they'll meet demand.


====3.1.4 LAMP and CRISPR====
====3.1.4 LAMP and CRISPR====
Line 42: Line 42:
<blockquote>These methods allow for faster amplification, less specialized equipment, and easy readout. LAMP methods also benefit from the ability to multiplex targets in a single reaction and can be combined with other isothermal methods, like &#91;[[recombinase polymerase amplification]]&#93; in the RAMP technique, to increase test accuracy even more. These techniques may be particularly useful for rapid, point-of-care diagnoses or for remote clinical testing without the need for laboratory equipment.</blockquote>
<blockquote>These methods allow for faster amplification, less specialized equipment, and easy readout. LAMP methods also benefit from the ability to multiplex targets in a single reaction and can be combined with other isothermal methods, like &#91;[[recombinase polymerase amplification]]&#93; in the RAMP technique, to increase test accuracy even more. These techniques may be particularly useful for rapid, point-of-care diagnoses or for remote clinical testing without the need for laboratory equipment.</blockquote>


CRISPR methods are also being used in conjunction with RT-LAMP.<ref name="GuglielmiTheExp20" /><ref name="EsbinOver20" /><ref name="BroughtonCRISPR20">{{cite journal |title=CRISPR–Cas12-based detection of SARS-CoV-2 |journal=Nature Biotechnology |author=Broughton, J.P.; Deng, X.; Yu, G. et al. |volume=38 |pages=870–74 |year=2020 |doi=10.1038/s41587-020-0513-4 |pmid=32300245}}</ref> RT-LAMP creates complementary double-stranded DNA (cDNA) from specimen RNA and then copies (amplifies) it. Then CRISPR methods are used to detect a predefined coronavirus sequence (from a cleaved molecular marker) in the resulting amplified specimen. Though as of August 2020 approved assays using CRISPR-based detection of SARS-CoV-2 are limited to a handful of companies<ref name="GuglielmiTheExp20" /><ref name="GDHCRISPR20">{{cite web |url=https://www.medicaldevice-network.com/comment/crispr-biotechnology-disrupt-covid-19-testing-market/ |title=CRISPR biotechnology set to disrupt Covid-19 testing market |author=GlobalData Healthcare |work=Verdict Medical Devices |date=14 July 2020}}</ref>, the technology has some promise as an alternative testing method. It has the additional advantage of being readily coupled with lateral flow assay technology to be deployed in the point-of-care (POC) setting.<ref name="EsbinOver20" /><ref name="GDHCRISPR20" />
CRISPR methods are also being used in conjunction with RT-LAMP.<ref name="GuglielmiTheExp20" /><ref name="EsbinOver20" /><ref name="BroughtonCRISPR20">{{cite journal |title=CRISPR–Cas12-based detection of SARS-CoV-2 |journal=Nature Biotechnology |author=Broughton, J.P.; Deng, X.; Yu, G. et al. |volume=38 |pages=870–74 |year=2020 |doi=10.1038/s41587-020-0513-4 |pmid=32300245}}</ref> RT-LAMP creates complementary double-stranded DNA (cDNA) from specimen RNA and then copies (amplifies) it. Then CRISPR methods are used to detect a predefined coronavirus sequence (from a cleaved molecular marker) in the resulting amplified specimen. Though as of November 2020 approved assays using CRISPR-based detection of SARS-CoV-2 are limited to a handful of companies<ref name="FDAEmerg20" /><ref name="GuglielmiTheExp20" /><ref name="GDHCRISPR20">{{cite web |url=https://www.medicaldevice-network.com/comment/crispr-biotechnology-disrupt-covid-19-testing-market/ |title=CRISPR biotechnology set to disrupt Covid-19 testing market |author=GlobalData Healthcare |work=Verdict Medical Devices |date=14 July 2020}}</ref>, the technology has some promise as an alternative testing method. It has the additional advantage of being readily coupled with lateral flow assay technology to be deployed in the point-of-care (POC) setting.<ref name="EsbinOver20" /><ref name="GDHCRISPR20" />


====3.1.5 Point-of-care and other alternative testing====
====3.1.5 Point-of-care and other alternative testing====
Line 55: Line 55:
* operate reliably outside a clean laboratory environment.
* operate reliably outside a clean laboratory environment.


While few of the available test systems can meet all these requirements, it's clear the push to expand COVID-19 testing to the point of care is accelerating.<ref name="PeplowRapid20" /><ref name="KriegerCorona20">{{cite web |url=https://www.mercurynews.com/2020/08/10/coronavirus-how-to-test-everyone-all-the-time/ |title=Coronavirus: How to test everyone, all the time |author=Krieger, L.M. |work=The Mercury News |date=10 August 2020 |accessdate=12 August 2020}}</ref><ref name="KriegerCorona20">{{cite web |url=https://www.mercurynews.com/2020/08/10/coronavirus-how-to-test-everyone-all-the-time/ |title=Coronavirus: How to test everyone, all the time |author=Krieger, L.M. |work=The Mercury News |date=10 August 2020 |accessdate=12 August 2020}}</ref><ref name="BrownPoint20">{{cite web |url=https://www.mcknights.com/news/point-of-care-testing-could-be-biggest-advance-in-covid-19-fight/ |title=Point-of-care testing could be ‘biggest advance’ in COVID-19 fight |author=Brown, D. |work=McKnight's |date=10 August 2020 |accessdate=12 August 2020}}</ref><ref name="WissonCOVID20">{{cite web |url=https://www.healtheuropa.eu/covid-19-and-effective-cohorting-rapid-point-of-care-triage-testing/101696/ |title=COVID-19 and effective cohorting: Rapid point of care triage testing |author=Wisson, J. |work=Health Europa |date=28 July 2020 |accessdate=12 August 2020}}</ref> The U.S. National Institutes of Health's Rapid Acceleration of Diagnostics (RADx) funding program has sought to speed up innovation in COVID-19 testing and promote "truly nontraditional approaches for testing that have a slightly longer horizon."<ref name="TrombergRapid20">{{cite journal |title=Rapid Scaling Up of Covid-19 Diagnostic Testing in the United States — The NIH RADx Initiative |journal=New England Journal of Medicine |author=Tromberg, B.J.; Schwetz, T.A.; Pérez-Stable, E.J. et al. |year=2020 |doi=10.1056/NEJMsr2022263}}</ref> As of August 2020, RADx has chosen to fund seven biomedical diagnostic companies making new lab-based and POC tests that could significantly ramp up overall testing in the U.S. into September 2020. Four offerings are lab-based (from Ginkgo Bioworks, Helix OpCo, Fluidigm, and Mammoth Biosciences) and three are POC tests (from Mesa Biotech, Quidel, and Talis Biomedical), all using varying technologies and methods such as next-generation sequencing, CRISPR, microfluidic chips, nucleic acid testing, antigen testing, and saliva testing.<ref name="NIHDelivering20">{{cite web |url=https://www.nih.gov/news-events/news-releases/nih-delivering-new-covid-19-testing-technologies-meet-us-demand |title=NIH delivering new COVID-19 testing technologies to meet U.S. demand |author=National Institutes of Health |publisher=National Institutes of Health |work=News Releases |date=31 July 2020 |accessdate=12 August 2020}}</ref> Both Mesa Biotech's rapid, cartridge-based RT-PCR Accula System and Quidel's rapid Sofia SARS Antigen FIA test are already EUAed and CLIA-waived<ref name="FDAEmerg20" />, with Talis' Talis One LAMP-based lateral flow immunoassay kit still awaiting EUA and CLIA status approval. Whether or not these POC and lab-based tests make it to the average [[physician office laboratory]] remains to be seen, however.
While few of the available test systems can meet all these requirements, it's clear the push to expand COVID-19 testing to the point of care is accelerating.<ref name="PeplowRapid20" /><ref name="KriegerCorona20">{{cite web |url=https://www.mercurynews.com/2020/08/10/coronavirus-how-to-test-everyone-all-the-time/ |title=Coronavirus: How to test everyone, all the time |author=Krieger, L.M. |work=The Mercury News |date=10 August 2020 |accessdate=12 August 2020}}</ref><ref name="KriegerCorona20">{{cite web |url=https://www.mercurynews.com/2020/08/10/coronavirus-how-to-test-everyone-all-the-time/ |title=Coronavirus: How to test everyone, all the time |author=Krieger, L.M. |work=The Mercury News |date=10 August 2020 |accessdate=12 August 2020}}</ref><ref name="BrownPoint20">{{cite web |url=https://www.mcknights.com/news/point-of-care-testing-could-be-biggest-advance-in-covid-19-fight/ |title=Point-of-care testing could be ‘biggest advance’ in COVID-19 fight |author=Brown, D. |work=McKnight's |date=10 August 2020 |accessdate=12 August 2020}}</ref><ref name="WissonCOVID20">{{cite web |url=https://www.healtheuropa.eu/covid-19-and-effective-cohorting-rapid-point-of-care-triage-testing/101696/ |title=COVID-19 and effective cohorting: Rapid point of care triage testing |author=Wisson, J. |work=Health Europa |date=28 July 2020 |accessdate=12 August 2020}}</ref> The U.S. National Institutes of Health's Rapid Acceleration of Diagnostics (RADx) funding program has sought to speed up innovation in COVID-19 testing and promote "truly nontraditional approaches for testing that have a slightly longer horizon."<ref name="TrombergRapid20">{{cite journal |title=Rapid Scaling Up of Covid-19 Diagnostic Testing in the United States — The NIH RADx Initiative |journal=New England Journal of Medicine |author=Tromberg, B.J.; Schwetz, T.A.; Pérez-Stable, E.J. et al. |year=2020 |doi=10.1056/NEJMsr2022263}}</ref> In August 2020, RADx had chosen to fund seven biomedical diagnostic companies making new lab-based and POC tests that could significantly ramp up overall testing in the U.S. into September 2020. Four offerings are lab-based (from Ginkgo Bioworks, Helix OpCo, Fluidigm, and Mammoth Biosciences) and three are POC tests (from Mesa Biotech, Quidel, and Talis Biomedical), all using varying technologies and methods such as next-generation sequencing, CRISPR, microfluidic chips, nucleic acid testing, antigen testing, and saliva testing.<ref name="NIHDelivering20">{{cite web |url=https://www.nih.gov/news-events/news-releases/nih-delivering-new-covid-19-testing-technologies-meet-us-demand |title=NIH delivering new COVID-19 testing technologies to meet U.S. demand |author=National Institutes of Health |publisher=National Institutes of Health |work=News Releases |date=31 July 2020 |accessdate=12 August 2020}}</ref> Both Mesa Biotech's rapid, cartridge-based RT-PCR Accula System and Quidel's rapid Sofia SARS Antigen FIA test are already EUAed and CLIA-waived<ref name="FDAEmerg20" />, with Talis' Talis One LAMP-based lateral flow immunoassay kit still awaiting EUA and CLIA status approval. As of October 28, 2020, RADx has added an additional 15 biomedical diagnostics projects for funding, for a total of 22.<ref name="NIHRADxTech20">{{cite web |url=https://www.nih.gov/research-training/medical-research-initiatives/radx/funding#radx-tech-atp-funded |title=Funded Projects - RADx Tech/ATP |publisher=National Institutes of Health |date=28 October 2020 |accessdate=19 November 2020}}</ref> Whether or not these POC and lab-based tests make it to the average [[physician office laboratory]] remains to be seen, however.


Outside the RADx program, enterprising researchers in other parts of the world are also attempting non-traditional approaches to improving COVID-19 testing options. Examples include<ref name="EsbinOver20" /><ref name="WissonCOVID20" /><ref name="Leichman10Ways20">{{cite web |url=https://www.israel21c.org/how-israeli-scientists-are-improving-corona-testing/ |title=10 ways Israeli scientists are improving corona testing |author=Leichman, A.K. |work=Isael21c |date=27 July 2020 |accessdate=11 August 2020}}</ref>:
Outside the RADx program, enterprising researchers in other parts of the world are also attempting non-traditional approaches to improving COVID-19 testing options. Examples include<ref name="EsbinOver20" /><ref name="WissonCOVID20" /><ref name="Leichman10Ways20">{{cite web |url=https://www.israel21c.org/how-israeli-scientists-are-improving-corona-testing/ |title=10 ways Israeli scientists are improving corona testing |author=Leichman, A.K. |work=Isael21c |date=27 July 2020 |accessdate=11 August 2020}}</ref><ref name="UNRCOVID20">{{cite web |url=www.sciencedaily.com/releases/2020/10/201014141032.htm |title=COVID-19 rapid test has successful lab results, research moves to next stages: Engineers and virologists team up for novel approach |author=University of Nevada, Reno |work=ScienceDaily |date=14 October 2020 |accessdate=19 November 2020}}</ref>:


* a method of DNA nanoswitch detection of virus particles;
* a method of DNA nanoswitch detection of virus particles;
Line 66: Line 66:
* a method that combines optical devices and magnetic particles to detect virus RNA;
* a method that combines optical devices and magnetic particles to detect virus RNA;
* an RNA extraction protocol that uses magnetic bead-based kits;
* an RNA extraction protocol that uses magnetic bead-based kits;
* a nanotube-based electrochemical biosensor for detecting biomarkers in a sample in less than a minute;
* the additional use of an [[artificial intelligence]] (AI) application to better scrutinize test results; and
* the additional use of an [[artificial intelligence]] (AI) application to better scrutinize test results; and
* the miniaturization of PCR technology to make it more portable and user-friendly.
* the miniaturization of PCR technology to make it more portable and user-friendly.


Of course, most of these are largely experimental technologies, and realistically getting them into the lab may be far out. But they represent out-of-the-box ideas that have some kind of chance at playing a greater role in the clinical laboratory or in point of care settings in the future.
Of course, most of these are largely experimental technologies, and realistically getting them into the lab may be far out. But they represent out-of-the-box ideas that have some kind of chance at playing a greater role in the clinical laboratory or in point-of-care settings in the future.

Revision as of 20:01, 19 November 2020

3. Adding COVID-19 and other virus testing to your laboratory

Maybe you've been running an environmental health laboratory and want to expand into clinical health testing. Perhaps you're in charge of an academic research lab but want to expand to the clinical diagnostic side. Or maybe you're running a physician office laboratory (POL) and are wondering if it's even possible to expand your waived testing efforts to COVID-19. Where the previous chapter discussed the "what" of COVID-19 and viral testing, this chapter aims to help you with the "how" of adding it to your laboratory offerings.

Naturally, many questions come with the "how":

  • Does using one method make the most sense, or will your lab turn to multiple methods for virus testing? This may be determined by current equipment, space considerations, and budget.
  • What type of lab are you running? A POL is going to have fewer options available than a CLIA moderate- or high-complexity lab.
  • How interoperable are you existing laboratory and clinical informatics solutions? Research laboratories face more challenges in integrating their systems with EHRs and other clinical systems.
  • What vendors and consultants are out there to help get equipped? Some vendors have very specific solutions, whereas others may have a broader range of offerings.

These questions and more are addressed in this chapter.

3.1 What methodologies will you use?

3.1.1 PCR

SARS-CoV-2 PCR screening test by nasal swab in Strasbourg on August 21, 2020.

In the previous chapter, the most common testing methodologies for COVID-19 and other coronaviruses were discussed in detail. The prevailing method (often called the "gold standard") among them all is real-time reverse-transcription polymerase chain reaction (rRT-PCR) assays for testing. Broadly speaking, PCR is useful in pharmaceutical, biotechnology, and genetic engineering endeavors, as well as clinical diagnostics. As such, labs in those industries that already have PCR infrastructure in place have a theoretical step-up over a lab that doesn't.

PCR technology has advanced to the point where it is more efficient and user-friendly than prior, yet "the high cost of the instruments, servicing contracts, and reagents pose major challenges for the market, especially to the price-sensitive academics."[1] Writing about the thirty-fifth anniversary of PCR in 2018, science writer Alan Dove not only highlighted these cost issues but also the size and energy requirements for running the equipment. "As a result, one of the defining techniques of modern molecular biology has remained stubbornly inaccessible to educators and unusable in many remote locations."[2] Various efforts have been made over the years to bring costs down by modifying how heating and temperature control are performed[3][4][5][6], but many of those system aren't typically optimal during a pandemic when turnaround time is critical.

Amidst the pandemic, additional challenges also exist to those wanting to conduct PCR testing for COVID-19 and other viruses. As was discussed at the end of the previous chapter, supplies of reagents and consumables are not particularly robust mid-pandemic, with shortages being reported since March 2020.[7][8][9][10][11][12][13][14][15][16][17] These shortages may eventually work themselves out, but they highlight the need for other varying methods that don't necessarily depend on the same reagents and consumables that are in short supply.

For those labs wishing to adopt PCR testing of viruses—particularly COVID-19—into their workflow while providing reasonable turnaround times, all is not lost. However, careful planning is required. For example, you'll want to keep in mind that some PCR machines require vendor-specific reagents. If you're going to acquire a particular instrument, you'll want to do due diligence by verifying not only the supported reagents but also those reagents' overall availability (real and projected). You'll also want to consider factors such as anticipated workload (tests per day), what your workflow will look like, and how to balance overall investment with the need for reasonable turnaround times.

An increasing body of research is being produced suggesting ways to improve turnaround times with PCR testing for COVID-19, with many research efforts focusing on cutting out RNA extraction steps entirely. Alcoba-Florez et al. propose direct heating of the sample-containing nasopharyngeal swab at 70 °C for 10 minutes in place of RNA extraction.[18] Adams et al. have proposed an "adaptive PCR" method using a non-standard reagent mix that skips RNA extraction and can act "as a contingency for resource‐limited settings around the globe."[19][20] Wee et al. skip RNA extraction and nucleic acid purification by using a single-tube homogeneous reaction method run on a lightweight, portable thermocycler.[21][22] Other innovations include tweaking reagents and enzymes to work with one step, skipping the reverse transcription step,[23] and using saliva-based molecular testing that skips RNA extraction.[24][25]

Saliva as a specimen

The saliva molecular tests in particular are intriguing. Talk of the potential utility of using saliva as a specimen for COVID-19 was occurring as early as April[26][27], and the first saliva-based COVID-19 test, produced by Spectrum Solutions in cooperation with RUCDR Infinite Biologics Laboratory[28] and Vault Health[29], was given an FDA EUA in April. On August 15, Yale School of Public Health was given an EUA for it SalivaDirect molecular test. Although still PCR-based (and a CLIA high-complexity test), SalivaDirect is being touted as a means to improve specimen collection safety, consume fewer reagents, prove compatible with high-throughput workflow, and cut overall turnaround time. Not only is saliva easier to collect and safer for healthcare staff, the test is essentially "open sourced," not requiring proprietary equipment from Yale, making the test more flexible by being validated to reliably function with a wider array of reagents and instruments.[30][31] When compared to using a nasopharyngeal swab specimen using the ThermoFisher Scientific TaqPath COVID-19 combo kit, results were comparable 94.1% of the time.[25] While sensitivity and specificity may be slightly less comparable to other PCR options[32], the overall advantages during reagent shortages and a definitive need for broader testing likely outweigh the slightly lesser sensitivity and specificity. As of November 2020, public health agencies in Arizona and Minnesota have already begun running trials of free saliva-based molecular testing.[33][34]

3.1.2 Pooled testing

Another method some labs are taking to speed up turnaround time is using pooled testing. The general concept involves placing two or more test specimens together and testing the pool as one specimen. The most obvious advantage to this is that the process saves on reagents and other supplies, particularly when supply chains are disrupted. This methodology is best used "in situations where disease prevalence is low, since each negative pool test eliminates the need to individually test those specimens and maximizes the number of individuals who can be tested over a given amount of time."[35] However, it's best left to situations where expectations are that less than 10 percent of the population being tested is affected by what's being tested for.[35][36][37]

The downside of pooled testing comes with the issues of dilution, contamination, and populations with 10 or more percent infected. A target-positive specimen that comingles with other target-free specimens is itself diluted and in some cases may cause issues with the limit of detection for the assay. Additionally, if the pool tests positive, target-free specimens may become contaminated by a target-positive specimen. This may cause issues with any individual specimen assays that get ran. And the workflows involving pooling must be precise, as a technician working with multiple specimens at the same time increases the chance of lab errors.[35][36][37] Finally, at least in the U.S., a Food and Drug Administration (FDA) emergency use authorization (EUA) for a validated pooled testing method is required.[35] (Validation of pooled methods may differ in other countries.[36]) The U.S. Centers for Disease Control and Prevention (CDC) has published interim guidance on pooled testing strategies for SARS-CoV-2.

3.1.3 Rapid antigen testing

As mentioned in the previous chapter, the benefits of antigen testing For COVID-19 and other viral infections are 1. specimen collection can typically be done with a simple nasal swab rather than a more invasive nasopharyngeal swab, 2. testing is more rapid and convenient, and 3. it takes some pressure off the PCR supply chain. However, antigen testing only tests what's there, rather than amplifying the amount, resulting in generally lower sensitivities.[38][39] As such, the real utility of antigen testing, despite its lower sensitivity, appears to be surveillance situations where a large group of individuals who are at risk can be screened at regularly scheduled intervals of two to four days. If your lab is able to support this sort of testing, then this type of testing may be an option. As of November 2020, six vendors have EUAs for antigen diagnostic tests.[40] With six U.S. states already contracted to purchase hundreds of thousands of two of those companies' test kits[41][14], it remains to be seen how well they'll meet demand.

3.1.4 LAMP and CRISPR

Early on in the pandemic, while PCR was getting most of the attention, reverse transcription loop-mediated isothermal amplification (RT-LAMP), an isothermal nucleic acid amplification technique that allows for RNA amplification, was also quietly being discussed[42][43], and it has since gained more attention.[44][45][46][47][48][49] The University of Oxford, for example, is in the process of getting a rapid, affordable, clinically-validated RT-LAMP test approved for the European market. Oxford also notes that "[a]n advantage of using LAMP technology is that it uses different reagents to most laboratory-based PCR tests."[49] Thi et al. have tested a two-color RT-LAMP assay with an N gene primer set and diagnostic validation using LAMP-sequencing, concluding that the pairing of the two "could offer scalable testing that would be difficult to achieve with conventional qRT-PCR based tests."[47] And California-based Color Genomics have set up their own proprietary RT-LAMP system, capable of handling up to 10,000 tests per day.[50]

In most cases, LAMP-based testing is much simpler than PCR, lacking the requirement of specialized instruments. Despite LAMP generally being thought of as less sensitive than PCR[50][39][51], the recent explosion of research into RT-LAMP methods for testing for the presence of SARS-CoV-2 seems to gradually indicate that "under optimized conditions," RT-LAMP methods may actually be able to rival the sensitivity and specificity of many RT-PCR COVID-19 tests.[48] Esbin et al. add[48]:

These methods allow for faster amplification, less specialized equipment, and easy readout. LAMP methods also benefit from the ability to multiplex targets in a single reaction and can be combined with other isothermal methods, like [recombinase polymerase amplification] in the RAMP technique, to increase test accuracy even more. These techniques may be particularly useful for rapid, point-of-care diagnoses or for remote clinical testing without the need for laboratory equipment.

CRISPR methods are also being used in conjunction with RT-LAMP.[39][48][52] RT-LAMP creates complementary double-stranded DNA (cDNA) from specimen RNA and then copies (amplifies) it. Then CRISPR methods are used to detect a predefined coronavirus sequence (from a cleaved molecular marker) in the resulting amplified specimen. Though as of November 2020 approved assays using CRISPR-based detection of SARS-CoV-2 are limited to a handful of companies[40][39][53], the technology has some promise as an alternative testing method. It has the additional advantage of being readily coupled with lateral flow assay technology to be deployed in the point-of-care (POC) setting.[48][53]

3.1.5 Point-of-care and other alternative testing

Example of a microfluidic chip used in point-of-care medical devices

On August 5, 2020, the WHO published a draft blueprint for what they call Target Product Profiles (TPP), which "describe the desirable and minimally acceptable profiles" for four difference COVID-19 test categories.[54] Addressing POC testing, the WHO recommends that such assays[54][55]:

  • have a sensitivity (true positive rate) or at least 70 percent;
  • have a specificity (true negative rate) of at least 97 percent;
  • provide results in less than 40 minutes;
  • require diagnostic machines that cost less than $3,000 U.S.;
  • individually cost less than $20 for the patient;
  • be simple enough that only a few hours of training are required to run the test; and
  • operate reliably outside a clean laboratory environment.

While few of the available test systems can meet all these requirements, it's clear the push to expand COVID-19 testing to the point of care is accelerating.[55][56][56][57][58] The U.S. National Institutes of Health's Rapid Acceleration of Diagnostics (RADx) funding program has sought to speed up innovation in COVID-19 testing and promote "truly nontraditional approaches for testing that have a slightly longer horizon."[59] In August 2020, RADx had chosen to fund seven biomedical diagnostic companies making new lab-based and POC tests that could significantly ramp up overall testing in the U.S. into September 2020. Four offerings are lab-based (from Ginkgo Bioworks, Helix OpCo, Fluidigm, and Mammoth Biosciences) and three are POC tests (from Mesa Biotech, Quidel, and Talis Biomedical), all using varying technologies and methods such as next-generation sequencing, CRISPR, microfluidic chips, nucleic acid testing, antigen testing, and saliva testing.[60] Both Mesa Biotech's rapid, cartridge-based RT-PCR Accula System and Quidel's rapid Sofia SARS Antigen FIA test are already EUAed and CLIA-waived[40], with Talis' Talis One LAMP-based lateral flow immunoassay kit still awaiting EUA and CLIA status approval. As of October 28, 2020, RADx has added an additional 15 biomedical diagnostics projects for funding, for a total of 22.[61] Whether or not these POC and lab-based tests make it to the average physician office laboratory remains to be seen, however.

Outside the RADx program, enterprising researchers in other parts of the world are also attempting non-traditional approaches to improving COVID-19 testing options. Examples include[48][58][62][63]:

  • a method of DNA nanoswitch detection of virus particles;
  • a dual biomarker-based finger-stick test for acute respiratory infections;
  • a rapid breath test to detect volatile organic chemicals from the lungs;
  • an affordable, hand-held spectral imaging device to detect virus in blood or saliva in seconds;
  • an ultrahigh frequency spectroscopic scanning device to see virus particles resonating;
  • a method that combines optical devices and magnetic particles to detect virus RNA;
  • an RNA extraction protocol that uses magnetic bead-based kits;
  • a nanotube-based electrochemical biosensor for detecting biomarkers in a sample in less than a minute;
  • the additional use of an artificial intelligence (AI) application to better scrutinize test results; and
  • the miniaturization of PCR technology to make it more portable and user-friendly.

Of course, most of these are largely experimental technologies, and realistically getting them into the lab may be far out. But they represent out-of-the-box ideas that have some kind of chance at playing a greater role in the clinical laboratory or in point-of-care settings in the future.

  1. Kenneth Research (23 June 2020). "Polymerase Chain Reaction Market Sector Analysis Report, Regional Outlook & Competitive Share & Forecast - 2023". MarketWatch. https://www.marketwatch.com/press-release/polymerase-chain-reaction-market-sector-analysis-report-regional-outlook-competitive-share-forecast---2023-2020-06-23. Retrieved 06 August 2020. 
  2. Dove, A. (2018). "PCR: Thirty-five years and counting". Science 360 (6389): 670–672. doi:10.1126/science.360.6389.673-c. 
  3. Wong, G.; Wong, I. Chan, K. et al. (2015). "A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings". PLoS One 10 (7): e0131701. doi:10.1371/journal.pone.0131701. 
  4. Kuznetsov, S.; Doonan, C.; Wilson, N. et al. (2015). "DIYbio Things: Open Source Biology Tools as Platforms for Hybrid Knowledge Production and Scientific Participation". Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems: 4065–68. doi:10.1145/2702123.2702235. 
  5. Norton, D. (11 May 2016). "Phila. med tech startup working on multimillion dollar government contract". Philadelphia Business Journal. https://www.bizjournals.com/philadelphia/news/2016/05/11/government-contract-biomeme-hiring-med-tech.html. Retrieved 06 August 2020. 
  6. An, J.; Jiang, Y.; Shi, B. et al. (2020). "Low-Cost Battery-Powered and User-Friendly Real-Time Quantitative PCR System for the Detection of Multigene". Micromachines 11: 435. doi:10.3390/mi11040435. 
  7. Herper, M.; Branswell, H. (10 March 2020). "Shortage of crucial chemicals creates new obstacle to U.S. coronavirus testing". STAT. https://www.statnews.com/2020/03/10/shortage-crucial-chemicals-us-coronavirus-testing/. Retrieved 10 April 2020. 
  8. Hale, C. (18 March 2020). "Qiagen aims to more than quadruple its COVID-19 reagent production in 6 weeks". Fierce Biotech. https://www.fiercebiotech.com/medtech/qiagen-aims-to-more-than-quadruple-its-covid-19-reagent-production-6-weeks. Retrieved 10 April 2020. 
  9. Mehta, A. (3 April 2020). "Mystery surrounds UK claim of Covid-19 test reagent ‘shortage’". Chemistry World. https://www.chemistryworld.com/mystery-surrounds-uk-claim-of-covid-19-test-reagent-shortage/4011457.article. Retrieved 10 April 2020. 
  10. Roche, B. (8 April 2020). "Irish scientists develop reagent in effort to ease Covid-19 testing delays". The Irish Times. https://www.irishtimes.com/news/science/irish-scientists-develop-reagent-in-effort-to-ease-covid-19-testing-delays-1.4223897. Retrieved 10 April 2020. 
  11. Padma, T.V. (13 May 2020). "Efforts to combat Covid-19 in India hit by imported reagent shortages". Chemistry World. https://www.chemistryworld.com/news/efforts-to-combat-covid-19-in-india-hit-by-imported-reagent-shortages/4011718.article#/. Retrieved 19 May 2020. 
  12. David, E.; Farber, S.E. (20 June 2020). "Survey shows resources for COVID-19 diagnostic testing still limited months later". ABC News. https://abcnews.go.com/Health/survey-shows-resources-covid-19-diagnostic-testing-limited/story?id=71341885. Retrieved 08 July 2020. 
  13. Johnson, K. (2 July 2020). "NC Labs Facing Shortages In COVID-19 Testing Chemicals". Patch. https://patch.com/north-carolina/charlotte/nc-labs-facing-shortages-covid-19-testing-chemicals. Retrieved 08 July 2020. 
  14. 14.0 14.1 Mervosh, S.; Fernandez, M. (4 August 2020). "‘It’s Like Having No Testing’: Coronavirus Test Results Are Still Delayed". The New York Times. https://www.nytimes.com/2020/08/04/us/virus-testing-delays.html. Retrieved 05 August 2020. 
  15. Courage, K.H. (31 July 2020). "Should we be testing fewer people to stop the spread of Covid-19?". Vox. https://www.vox.com/2020/7/31/21336212/covid-19-test-results-delays. Retrieved 05 August 2020. 
  16. American Society for Microbiology (9 November 2020). "Supply Shortages Impacting COVID-19 and Non-COVID Testing". American Society for Microbiology. https://asm.org/Articles/2020/September/Clinical-Microbiology-Supply-Shortage-Collecti-1. Retrieved 18 November 2020. 
  17. Abbott, B.; Krouse, S. (9 November 2020). "Covid-19 Testing Saps Supplies Needed for Other Medical Tests". The Wall Street Journal. https://www.wsj.com/articles/covid-19-testing-saps-supplies-needed-for-other-medical-tests-11604926800. Retrieved 18 November 2020. 
  18. Alcoba-Florez, J.; González-Montelongo, R.; Íñigo-Campos, A.; García-Martínezde Artola, D.; Gil-Campesino, H.;
    The Microbiology Technical Support Team; Ciuffreda, L.; Valenzuela-Fernández, A.; Flores, C. (2020). "Fast SARS-CoV-2 detection by RT-qPCR in preheated nasopharyngeal swab samples". International Journal of Infectious Diseases 97: 66–68. doi:10.1016/j.ijid.2020.05.099.
     
  19. Shapiro, M. (29 July 2020). "Streamlined diagnostic approach to COVID-19 can avoid potential testing logjam". Research News @ Vanderbilt. https://news.vanderbilt.edu/2020/07/29/streamlined-diagnostic-approach-to-covid-19-can-avoid-potential-testing-logjam/. Retrieved 06 August 2020. 
  20. Adams, N.M.; Leelawong, M.; Benton, A. et al. (2020). "COVID‐19 diagnostics for resource‐limited settings: Evaluation of “unextracted” qRT‐PCR". Journal of Medical Virology. doi:10.1002/jmv.26328. 
  21. Mehar, P. (27 July 2020). "Improving the speed of gold-standard COVID-19 diagnostic test". Tech Explorist. https://www.techexplorist.com/improving-speed-gold-standard-covid-19-diagnostic-test/34069/. Retrieved 06 August 2020. 
  22. Wee, S.K.; Sivalingam, S.P.; Yap, E.P.H. (2020). "Rapid Direct Nucleic Acid Amplification Test without RNA Extraction for SARS-CoV-2 Using a Portable PCR Thermocycler". Genes 11 (6): 664. doi:10.3390/genes11060664. 
  23. Council for Scientific and Industrial Research (30 July 2020). "Faster, local COVID-19 test kits could be ready by year-end". Engineering News. Creamer Media. https://www.engineeringnews.co.za/article/faster-local-covid-19-test-kits-could-be-ready-by-year-end-2020-07-30/. Retrieved 07 August 2020. 
  24. Ranoa, D.R.E.; Holland, R.L.; Alnaji, F.G. et al. (2020). "Saliva-Based Molecular Testing for SARS-CoV-2 that Bypasses RNA Extraction". bioRxiv. doi:10.1101/2020.06.18.159434. 
  25. 25.0 25.1 Thomas, L. (6 August 2020). "Fast, cheap and easy COVID-19 test from Yale". News Medical - Life Sciences. https://www.news-medical.net/news/20200806/Fast-cheap-and-easy-COVID-19-test-from-Yale.aspx. Retrieved 16 August 2020. 
  26. Xu, R.; Cui, B.; Duan, X. et al. (2020). "Saliva: Potential diagnostic value and transmission of 2019-nCoV". International Journal of Oral Science 12: 11. doi:10.1038/s41368-020-0080-z. 
  27. Greenwood, M. (24 April 2020). "Saliva samples preferable to deep nasal swabs for testing COVID-19". YaleNews. https://news.yale.edu/2020/04/24/saliva-samples-preferable-deep-nasal-swabs-testing-covid-19. Retrieved 01 May 2020. 
  28. "First saliva collection device FDA EUA authorized for COVID-19 testing". Spectrum Solutions. 2020. https://spectrumsolution.com/fda-authorized-covid-19-updates/. Retrieved 16 August 2020. 
  29. Vault Health (14 April 2020). "Vault Health Launches First-of-its-Kind Saliva-based FDA EUA Approved Test for COVID-19". PR Newswire. https://www.prnewswire.com/news-releases/vault-health-launches-first-of-its-kind-saliva-based-fda-eua-approved-test-for-covid-19-301039633.html. Retrieved 01 May 2020. 
  30. Gallagher, G.M. (15 August 2020). "FDA Grants Emergency COVID-19 Authorization to Yale's Open Source Method of Saliva Testing". ContagionLive. https://www.contagionlive.com/news/fda-grants-emergency-covid19-authorization-yale-open-source-method-saliva-testing. Retrieved 16 August 2020. 
  31. Zillgitt, J. (15 August 2020). "FDA approves COVID-19 saliva test developed at Yale in partnership with the NBA, NBPA". USA Today. https://www.usatoday.com/story/sports/nba/2020/08/15/fda-approves-covid-19-saliva-test-developed-yale-nba-nbpa-aid/5590452002/. Retrieved 16 August 2020. 
  32. Weissleder, R.; Lee, H.; Ko, J. et al. (15 August 2020). "COVID-19 Diagnostics in Context". Harvard Center for Systems Biology. https://csb.mgh.harvard.edu/covid. Retrieved 16 August 2020. 
  33. Parsons, J. (14 November 2020). "Places with saliva-based COVID testing expecting influx of people". AZFamily. https://www.azfamily.com/news/continuing_coverage/coronavirus_coverage/places-with-saliva-based-covid-testing-expecting-influx-of-people/article_76ac95c4-26b5-11eb-b34e-3728b1308927.html. Retrieved 19 November 2020. 
  34. Minnesota Department of Health (22 October 2020). "State launches pilot of COVID-19 test at home saliva program". Minnesota Department of Health. https://www.health.state.mn.us/news/pressrel/2020/covid102220.html. 
  35. 35.0 35.1 35.2 35.3 Rohde, R. (20 July 2020). "COVID-19 Pool Testing: Is It Time to Jump In?". American Society for Microbiology. https://asm.org/Articles/2020/July/COVID-19-Pool-Testing-Is-It-Time-to-Jump-In. Retrieved 06 August 2020. 
  36. 36.0 36.1 36.2 Masha, M.; Chau, S. (4 August 2020). "Pooled virus tests help stretched health services". Asia Times. https://asiatimes.com/2020/08/pooled-virus-tests-help-stretched-health-services/. Retrieved 06 August 2020. 
  37. 37.0 37.1 Citroner, G. (3 August 2020). "How Pooled Testing Can Help Us Fight Spread of COVID-19". Healthline. https://www.healthline.com/health-news/how-pooled-testing-can-help-us-fight-spread-of-covid-19. Retrieved 06 August 2020. 
  38. Service, R.F. (2020). "Radical shift in COVID-19 testing needed to reopen schools and businesses, researchers say". Science. doi:10.1126/science.abe1546. 
  39. 39.0 39.1 39.2 39.3 Guglielmi, G. (2020). "The explosion of new coronavirus tests that could help to end the pandemic". Nature 583: 506–09. doi:10.1038/d41586-020-02140-8. 
  40. 40.0 40.1 40.2 "In Vitro Diagnostics EUAs". U.S. Food and Drug Administration. 17 November 2020. https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas. Retrieved 19 November 2020. 
  41. Clark, C. (6 August 2020). "COVID Antigen Tests: Coming to Case Counts Near You?". MedPage Today. https://www.medpagetoday.com/infectiousdisease/covid19/87930. Retrieved 07 August 2020. 
  42. Lamb, L.E.; Barolone, S.N.; Ward, E. et al. (2020). "Rapid Detection of Novel Coronavirus (COVID-19) by Reverse Transcription-Loop-Mediated Isothermal Amplification". medRxiv. doi:10.1101/2020.02.19.20025155. 
  43. Schmid-Burgk, J.L.; Li, D.; Feldman, D. et al. (2020). "LAMP-Seq: Population-Scale COVID-19 Diagnostics Using Combinatorial Barcoding". bioRxiv. doi:10.1101/2020.04.06.025635. https://www.biorxiv.org/content/10.1101/2020.04.06.025635v2.article-info. 
  44. Yu, L.; Wu, S.; Hao, X. et al. (2020). "Rapid Detection of COVID-19 Coronavirus Using a Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) Diagnostic Platform". Clinical Chemistry 66 (7): 975–77. doi:10.1093/clinchem/hvaa102. PMC PMC7188121. PMID 32315390. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7188121. 
  45. Park, G.-S.; Ku, K.; Baek, S.-H. et al. (2020). "Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assays Targeting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)". Journal of Molecular Diagnostics 22 (6): 729–35. doi:10.1016/j.jmoldx.2020.03.006. PMC PMC7144851. PMID 32276051. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144851. 
  46. Kellner, M.J.; Ross, J.J.; Schnabl, J. et al. (2020). "A rapid, highly sensitive and open-access SARS-CoV-2 detection assay for laboratory and home testing". bioRxiv. doi:10.1101/2020.06.23.166397. 
  47. 47.0 47.1 Thi, V.L.D.; Herbst, K.; Boerner, K. et al. (2020). "A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples". Science Translational Medicine: eabc7075. doi:10.1126/scitranslmed.abc7075. PMID 32719001. 
  48. 48.0 48.1 48.2 48.3 48.4 48.5 Esbin, M.N.; Whitney, O.N.; Chong, S. et al. (2020). "Overcoming the bottleneck to widespread testing: a rapid review of nucleic acid testing approaches for COVID-19 detection". RNA 26 (7): 771–83. doi:10.1261/rna.076232.120. PMC PMC7297120. PMID 32358057. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297120. 
  49. 49.0 49.1 Hale, C. (9 July 2020). "Oxford researchers develop portable COVID-19 test costing less than $25". Fierce Biotech. https://www.fiercebiotech.com/medtech/oxford-researchers-develop-portable-covid-19-test-costing-less-than-25. Retrieved 07 August 2020. 
  50. 50.0 50.1 Sheridan, K. (6 August 2020). "This California company has a better version of a simpler, faster Covid-19 test". STAT. https://www.statnews.com/2020/08/06/better-simpler-faster-covid-19-test/. Retrieved 08 August 2020. 
  51. Heidt, A. (9 July 2020). "Saliva Tests: How They Work and What They Bring to COVID-19". The Scientist. https://www.the-scientist.com/news-opinion/saliva-tests-how-they-work-and-what-they-bring-to-covid-19-67720. Retrieved 08 August 2020. 
  52. Broughton, J.P.; Deng, X.; Yu, G. et al. (2020). "CRISPR–Cas12-based detection of SARS-CoV-2". Nature Biotechnology 38: 870–74. doi:10.1038/s41587-020-0513-4. PMID 32300245. 
  53. 53.0 53.1 GlobalData Healthcare (14 July 2020). "CRISPR biotechnology set to disrupt Covid-19 testing market". Verdict Medical Devices. https://www.medicaldevice-network.com/comment/crispr-biotechnology-disrupt-covid-19-testing-market/. 
  54. 54.0 54.1 World Health Organization (5 August 2020). "COVID-19 Target product profiles for priority diagnostics to support response to the COVID-19 pandemic v.0.1". World Health Organization. https://www.who.int/publications/m/item/covid-19-target-product-profiles-for-priority-diagnostics-to-support-response-to-the-covid-19-pandemic-v.0.1. Retrieved 12 August 2020. 
  55. 55.0 55.1 Peplow, M. (10 August 2020). "Rapid COVID-19 testing breaks free from the lab". Chemical & Engineering News. https://cen.acs.org/analytical-chemistry/diagnostics/Rapid-COVID-19-testing-breaks/98/web/2020/08. Retrieved 12 August 2020. 
  56. 56.0 56.1 Krieger, L.M. (10 August 2020). "Coronavirus: How to test everyone, all the time". The Mercury News. https://www.mercurynews.com/2020/08/10/coronavirus-how-to-test-everyone-all-the-time/. Retrieved 12 August 2020. 
  57. Brown, D. (10 August 2020). "Point-of-care testing could be ‘biggest advance’ in COVID-19 fight". McKnight's. https://www.mcknights.com/news/point-of-care-testing-could-be-biggest-advance-in-covid-19-fight/. Retrieved 12 August 2020. 
  58. 58.0 58.1 Wisson, J. (28 July 2020). "COVID-19 and effective cohorting: Rapid point of care triage testing". Health Europa. https://www.healtheuropa.eu/covid-19-and-effective-cohorting-rapid-point-of-care-triage-testing/101696/. Retrieved 12 August 2020. 
  59. Tromberg, B.J.; Schwetz, T.A.; Pérez-Stable, E.J. et al. (2020). "Rapid Scaling Up of Covid-19 Diagnostic Testing in the United States — The NIH RADx Initiative". New England Journal of Medicine. doi:10.1056/NEJMsr2022263. 
  60. National Institutes of Health (31 July 2020). "NIH delivering new COVID-19 testing technologies to meet U.S. demand". News Releases. National Institutes of Health. https://www.nih.gov/news-events/news-releases/nih-delivering-new-covid-19-testing-technologies-meet-us-demand. Retrieved 12 August 2020. 
  61. "Funded Projects - RADx Tech/ATP". National Institutes of Health. 28 October 2020. https://www.nih.gov/research-training/medical-research-initiatives/radx/funding#radx-tech-atp-funded. Retrieved 19 November 2020. 
  62. Leichman, A.K. (27 July 2020). "10 ways Israeli scientists are improving corona testing". Isael21c. https://www.israel21c.org/how-israeli-scientists-are-improving-corona-testing/. Retrieved 11 August 2020. 
  63. University of Nevada, Reno (14 October 2020). [www.sciencedaily.com/releases/2020/10/201014141032.htm "COVID-19 rapid test has successful lab results, research moves to next stages: Engineers and virologists team up for novel approach"]. ScienceDaily. www.sciencedaily.com/releases/2020/10/201014141032.htm. Retrieved 19 November 2020.