Difference between revisions of "User:Shawndouglas/sandbox/sublevel10"

From LIMSWiki
Jump to navigationJump to search
(Edited)
 
(201 intermediate revisions by the same user not shown)
Line 1: Line 1:
We continue to look at 20 broad industry categories and the laboratories associated with them. For each you'll find a brief description with common services and how the lab type affects the average person. As discussed previously, using our client type + function model we dig into examples found in the private, government, and academic sectors and then outline function through activities, sciences, test types, equipment, and unique attributes.
<div class="nonumtoc">__TOC__</div>
{{ombox
| type      = notice
| style    = width: 960px;
| text      = This is sublevel10 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p>
}}


<div align="center">-----Return to [[User:Shawndouglas/sandbox/sublevel4|the beginning]] of this guide-----</div>
==Sandbox begins below==
__TOC__
==1. Introduction to materials and materials testing laboratories==


==Labs by industry: Part 3==
What is a material? This question is surprisingly more complex for the layperson than may be expected. The definition of "material" has varied significantly over the years, dependent on the course of study, laboratory, author, etc. A 1974 definition by Richardson and Peterson that has seen some use in academic study defines a material as "any nonliving matter of academic, engineering, or commercial importance."<ref>{{Cite book |last=Richardson |first=James H. |last2=Peterson |first2=Ronald V. |date= |year=1974 |title=Systematic Materials Analysis, Part 1 |url=https://books.google.com/books?id=BNocpYI8gJkC&printsec=frontcover&dq=Systematic+Materials+analysis&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjB1OeQx-aAAxWnmmoFHSV2BSsQ6AF6BAgMEAI#v=onepage&q=Systematic%20Materials%20analysis&f=false |chapter=Chapter 1: Introduction to Analytical Methods |series=Materials science series |publisher=Academic Press |place=New York |page=2 |isbn=978-0-12-587801-2 |doi=10.1016/B978-0-12-587801-2.X5001-0}}</ref> But recently biomaterials like biopolymers (as replacements for plastics)<ref>{{Cite journal |last=Das |first=Abinash |last2=Ringu |first2=Togam |last3=Ghosh |first3=Sampad |last4=Pramanik |first4=Nabakumar |date=2023-07 |title=A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers |url=https://link.springer.com/10.1007/s00289-022-04443-4 |journal=Polymer Bulletin |language=en |volume=80 |issue=7 |pages=7247–7312 |doi=10.1007/s00289-022-04443-4 |issn=0170-0839 |pmc=PMC9409625 |pmid=36043186}}</ref> and even natural<ref>{{Cite journal |last=Kurniawan |first=Nicholas A. |last2=Bouten |first2=Carlijn V.C. |date=2018-04 |title=Mechanobiology of the cell–matrix interplay: Catching a glimpse of complexity via minimalistic models |url=https://linkinghub.elsevier.com/retrieve/pii/S2352431617301864 |journal=Extreme Mechanics Letters |language=en |volume=20 |pages=59–64 |doi=10.1016/j.eml.2018.01.004}}</ref> and engineered biological tissues<ref>{{Cite journal |last=Kim |first=Hyun S. |last2=Kumbar |first2=Sangamesh G. |last3=Nukavarapu |first3=Syam P. |date=2021-03 |title=Biomaterial-directed cell behavior for tissue engineering |url=https://linkinghub.elsevier.com/retrieve/pii/S246845112030057X |journal=Current Opinion in Biomedical Engineering |language=en |volume=17 |pages=100260 |doi=10.1016/j.cobme.2020.100260 |pmc=PMC7839921 |pmid=33521410}}</ref> may be referenced as "materials." (And to Richardson and Peterson's credit, they do add in the preface of their 1974 work that "[a]lthough the volumes are directed toward the physical sciences, they can also be of value for the biological scientist with materials problems."<ref>{{Cite book |last=Richardson |first=James H. |last2=Peterson |first2=Ronald V. |date= |year=1974 |title=Systematic Materials Analysis, Part 1 |url=https://books.google.com/books?id=BNocpYI8gJkC&printsec=frontcover&dq=Systematic+Materials+analysis&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjB1OeQx-aAAxWnmmoFHSV2BSsQ6AF6BAgMEAI#v=onepage&q=Systematic%20Materials%20analysis&f=false |chapter=Preface |series=Materials science series |publisher=Academic Press |place=New York |page=xiii |isbn=978-0-12-587801-2 |doi=10.1016/B978-0-12-587801-2.X5001-0}}</ref> A modern example would be biodegradable materials research for tissue and medical implant engineering.<ref>{{Cite journal |last=Modrák |first=Marcel |last2=Trebuňová |first2=Marianna |last3=Balogová |first3=Alena Findrik |last4=Hudák |first4=Radovan |last5=Živčák |first5=Jozef |date=2023-03-16 |title=Biodegradable Materials for Tissue Engineering: Development, Classification and Current Applications |url=https://www.mdpi.com/2079-4983/14/3/159 |journal=Journal of Functional Biomaterials |language=en |volume=14 |issue=3 |pages=159 |doi=10.3390/jfb14030159 |issn=2079-4983 |pmc=PMC10051288 |pmid=36976083}}</ref>) Yet today more questions arise. what of matter that doesn't have "academic, engineering, or commercial importance"; can it now be called a "material" in 2023? What if a particular matter exists today but hasn't been thoroughly studied to determine its value to researchers and industrialists? Indeed, the definition of "material" today is no easy task. This isn't made easier when even modern textbooks introduce the topic of materials science without aptly defining what a material actually is<ref>{{Cite book |last=Callister |first=William D. |last2=Rethwisch |first2=David G. |date= |year=2021 |title=Fundamentals of materials science and engineering: An integrated approach |url=https://books.google.com/books?id=NC09EAAAQBAJ&newbks=1&newbks_redir=0&printsec=frontcover |chapter=Chapter 1. Introduction |publisher=Wiley |place=Hoboken |pages=2–18 |isbn=978-1-119-74773-4}}</ref>, let alone what materials science is.<ref>{{Cite book |last=Sutton |first=Adrian P. |date=2021 |title=Concepts of materials science |edition=First edition |publisher=Oxford University Oress |place=Oxford [England] ; New York, NY |isbn=978-0-19-284683-9}}</ref> Perhaps the writers of said textbooks assume that the definitions of "material" and "materials science" have a "well duh" response.
===Geology and mining===
[[File:Mining near the city of Tomsk in Russia.jpg|left|400px]]
{{clear}}
Geology and mining laboratories are responsible for analyzing rocks, minerals, and metals; monitoring and reporting on the status of mining operation effects on the environment; and teaching and promoting research of geological and mining science and engineering concepts. These labs are involved at most stages of geological and mining operations, from exploration and production to remediation. These labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to)<ref name="RajasthanTesting">{{cite web |url=http://www.dmg-raj.org/docs/Vol%2024(4).doc |title=Testing Facilities Available at Mines & Geology Department Laboratory |work=Department of Mines & Geology |publisher=Government of Rajasthan |accessdate=03 June 2017}}</ref><ref name="AGATMetals">{{cite web |url=http://www.agatlabs.com/minerals-and-metals/ |title=Metals and Minerals Services |publisher=AGAT Laboratories Ltd |accessdate=03 June 2017}}</ref><ref name="MichTechGeo">{{cite web |url=http://www.mtu.edu/geo/labs/equipment/ |title=Labs and Equipment |publisher=Michigan Tech |accessdate=03 June 2017}}</ref>:


* chemical analysis
To complicate things further, a material can be defined based upon the context of use. Take for example the ISO 10303-45 standard by the [[International Organization for Standardization]] (ISO), which addresses the representation and exchange of material and product manufacturing information in a standardized way, specifically describing how material and other engineering properties can be described in the model/framework.<ref name="ISO10303-45">{{cite web |url=https://www.iso.org/standard/78581.html |title=ISO 10303-45:2019 ''Industrial automation systems and integration — Product data representation and exchange — Part 45: Integrated generic resource: Material and other engineering properties'' |publisher=International Organization for Standardization |date=November 2019 |accessdate=20 September 2023}}</ref><ref name=":0">{{Cite journal |last=Swindells |first=Norman |date=2009 |title=The Representation and Exchange of Material and Other Engineering Properties |url=http://datascience.codata.org/articles/abstract/10.2481/dsj.008-007/ |journal=Data Science Journal |language=en |volume=8 |pages=190–200 |doi=10.2481/dsj.008-007 |issn=1683-1470}}</ref> The context here is "standardized data transfer of material- and product-related data," which in turn involves [[Ontology (information science)|ontologies]] that limit the complexity of materials science discourse and help better organize materials and product data into information and knowledge. As such, the ISO 10303 set of standards must define "material," and 10303-45 complicates matters further in this regard (though it will be helpful for this guide in the end).
* physical testing
* earth magnetism measurement
* petrological imaging
* soil suitability and fertility
* environmental analysis and remediation
* drill core analysis
* purity testing


''How do geology and mining laboratories intersect the average person's life on a daily basis?'' Tracking down how these labs intersect our lives is comparatively a bit more difficult than the industries we've looked at previously. From an environmental standpoint, when regulated, contamination testing is important to the ecosystems in and around a mining site. The oxidation of sulfide minerals and the corresponding acidification of the environment is well known in the mining community, requiring tested and standardized methods to limit the effects.<ref name="AGICanWe">{{cite web |url=https://www.americangeosciences.org/critical-issues/faq/can-we-mitigate-environmental-impacts-mining |title=Can we mitigate environmental impacts from mining? |publisher=American Geosciences Institute |accessdate=03 June 2017}}</ref> Secondarily, research coming out of geology and mining labs is helping to make current and future mining activities safer for humans and guiding the implementation of early-warning systems for earthquakes.<ref name="USGSEarthquake">{{cite web |url=https://earthquake.usgs.gov/research/earlywarning/ |title=Earthquake Early Warning |work=Earthquake Hazards Program |publisher=U.S. Geological Survey |accessdate=03 June 2017}}</ref> Without these laboratories in place, there's a higher likelihood humans and animals alike would face a higher risk of poisoning or death.
In reviewing ISO 10303-45 in 2009, Swindells notes the following about the standard<ref name=":0" />:


====Client types====
<blockquote>The first edition of ISO 10303-45 was derived from experience of the testing of, so-called, "materials" properties, and the terminology used in the standard reflects this experience. However, the information modelling of an engineering material, such as alloyed steel or high density polyethylene, is no different from the information modelling of a "product." The "material" properties are therefore one of the characteristics of a product, just as its shape and other characteristics are. Therefore all "materials" are products, and the information model in ISO 10303-45 can be used for any property of any product.</blockquote>


'''Private''' - These labs focus on providing third-party analysis and consultation services to industry and government, including explorations services, environmental chemistry, and purity testing.
Put in other words, for the purposes of defining "material" for a broader, more standardized ontology, materials and products can be viewed as interchangeable. Mies puts this another way, stating that based on ISO 10303-45, a material can be defined as "a manufactured object with associated properties in the context of its use environment."<ref>{{Cite book |last=Mies, D. |date=2002 |editor-last=Kutz |editor-first=Myer |title=Handbook of materials selection |url=https://books.google.com/books?id=gWg-rchM700C&pg=PA499 |chapter=Chapter 17. Managing Materials Data |publisher=J. Wiley |place=New York |page=499 |isbn=978-0-471-35924-1}}</ref> But this representation only causes more confusion as we ask "does a material have to be manufactured?" After all, we have the term "raw material," which the Oxford English Dictionary defines as "the basic material from which a product is manufactured or made; unprocessed material."<ref name="OEDRawMat">{{cite web |url=https://www.oed.com/search/dictionary/?scope=Entries&q=raw+material |title=raw material |work=Oxford English Dictionary |accessdate=20 September 2023}}</ref> Additionally, chemical elements are defined as "the fundamental materials of which all matter is composed."<ref>{{Cite web |last=Lagowski, J.J.; Mason, B.H.; Tayler, R.J. |date=16 August 2023 |title=chemical element |work=Encyclopedia Britannica |url=https://www.britannica.com/science/chemical-element |accessdate=20 September 2023}}</ref> Taking into account the works of Richardson and Peterson, Mies, and Swindells, as well as ISO 10303-45, the concepts of "raw materials" and "chemical elements," and modern trends towards the inclusion of biomaterials (though discussion of biomaterials will be limited here) in materials science, we can land on the following definition for the purposes of this guide:


Examples include:
:A material is discrete matter that is elementally raw (e.g., native metallic and non-metallic elements), fundamentally processed (e.g., calcium oxide), or fully manufactured (by human, automation, or both; e.g., a fastener) that has an inherent set of properties that a human or automation-driven solution (e.g., an [[artificial intelligence]] [AI] algorithm) has identified for a potential or realized use environment.


* [http://www.agatlabs.com/minerals-and-metals/ AGAT Laboratories]
First, this definition more clearly defines the types of matter that can be included, recognizing that manufactured products may still be considered materials. Initially this may seem troublesome, however, in the scope of complex manufactured products such as automobiles and satellites; is anyone really referring to those types of products as "materials"? As such, the word "discrete" is included, which in manufacturing parlance refers to distinct components such as brackets and microchips that can be assembled into a greater, more complex finished product. This means that while both a bolt and an automobile are manufactured "products," the bolt, as a discrete type of matter, can be justified as a material, whereas the automobile can't. Second—answering the question of "what if a particular matter exists today but hasn't been thoroughly studied to determine its value to researchers and industrialists?"—the definition recognizes that the material needs at a minimum recognition of a potential use case. This turns out to be OK, because if no use case has been identified, the matter still can be classified as an element, compound, or substance. It also insinuates that that element, compound, or substance with no use case isn't going to be used in the manufacturing of any material or product. Third, the definition also recognizes the recent phenomena of autonomous systems discovering new materials and whether or not those autonomous systems should be credited with inventorship.<ref>{{Cite journal |last=Ishizuki |first=Naoya |last2=Shimizu |first2=Ryota |last3=Hitosugi |first3=Taro |date=2023-12-31 |title=Autonomous experimental systems in materials science |url=https://www.tandfonline.com/doi/full/10.1080/27660400.2023.2197519 |journal=Science and Technology of Advanced Materials: Methods |language=en |volume=3 |issue=1 |pages=2197519 |doi=10.1080/27660400.2023.2197519 |issn=2766-0400}}</ref> The question of inventorship is certainly worth discussion, though it is beyond the scope of this guide. Regardless, the use of automated systems to match a set of properties of a particular matter to a real-world use case isn't likely to go away, and this definition accepts that likelihood.
* [http://expinsco-inspection.com/laboratory-testing-and-analysis/ Expert Inspection Company]
* [http://www.huffmanlabs.com/?page_id=154 Huffman Hazen Laboratories]


'''Government''' - Many governments around the world have geology and mining departments, divisions, etc. responsible for contamination testing, water quality monitoring, and applied research. They also occasionally offer their services to outside parties and agencies.
Finally, this leads us to the realization that materials, by definition, are inherently linked to the act of intentional human- or automation-driven creation, i.e., manufacturing and construction.


Examples include:


* [http://www.dmg.kerala.gov.in/index.php?option=com_content&view=article&id=87&Itemid=72 Government of Kerala, Department of Mining and Geology Chemical Laboratory]
===1.1 Materials testing labs, then and now===
* [http://www.ggmc.gov.gy/main/?q=content/guyana-geology-and-mines-chemical-laboratory Guyana Geology and Mines Chemical Laboratory]
* [http://www.mgd.gov.jm/services/products/analytical-lab-services.html Jamaica's Mines and Geology Division]


'''Academic''' - Like other industries, academic labs in geology and mining programs contribute diverse research programs to society while teaching the next generation of geologists, engineers, and miners.
====1.1.1 Materials testing 2.0====


Examples include:
*https://onlinelibrary.wiley.com/doi/full/10.1111/str.12434
*https://onlinelibrary.wiley.com/doi/full/10.1111/str.12370


* [https://geology.mines.edu/Laboratories Colorado School of Mines' Geology and Geological Engineering Laboratories]
* [http://www.mtu.edu/geo/labs/equipment/ Michigan Tech's Geological Engineering Laboratories]
* [https://engineering.und.edu/geology-and-geological-engineering/research/ University of North Dakota's Harold Hamm School of Geology and Geological Engineering]


====Functions====
===1.2 Industries, products, and raw materials===


''What are the most common functions?''  analytical, research/design, QA/QC, and teaching


''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' alloys, base and minor metals, minerals, precious metals, sediment, soil, water
===1.3 Laboratory roles and activities in the industry===


''What sciences are being applied in these labs?'' chemistry, environmental science, geology, geotechnical engineering, metallurgy, mineralogy, mining engineering, petrology, seismology
====1.3.1 R&D roles and activities====


''What are some examples of test types and equipment?''
====1.3.2 Pre-manufacturing and manufacturing roles and activities====


'''Common test types include''':
====1.3.3 Post-production quality control and regulatory roles and activities====
 
Absorption, Age determination, Angle of repose, Atterberg limits, Bioaccumulation, Carbon-hydrogen ratio, Characterization, Compression, Compaction, Consolidation, Density, Durability, Geochemistry, Geophysics, Grain and particle size, Grindability, Hydraulic conductivity, Identification, Inclusion, Isotope analysis, Macroetch, Metallurgical analysis, Mobility, Moisture, Nuclear density, Organic carbon, Oxidation reduction potential, Passivation, Permeability, pH, Proficiency, Radioactivity, Radiochemical, Refractive index, Seismic, Shear, Stability, Stress corrosion cracking, Ultraviolet
 
'''Industry-related lab equipment may include''':
 
autoclave, balance, calorimeter, chromatographic, compressive strength tester, furnace, jaw crusher, magnetic separator, microscope, mill (various), pH meter, photoelectric flame photometer, reflectance/gloss meter, roll crusher, sieve shaker, spectrophotometer, titrator, thermogravimetric analyzer, viscometer
 
''What else, if anything, is unique about the labs in the clinical research industry?'' While many geology laboratories are indoors, outdoor labs — i.e., field studies — are an important part of the industry. Those that are indoors tend to stand out; take for instance the approximately 20 luminescence geological dating laboratories in the U.S., responsible for dating geological substances.<ref name="USGSOtherUSLabs">{{cite web |url=https://gec.cr.usgs.gov/projects/lumlab/other_labs.shtml |title=For Prospective Users: Other U.S. Laboratories for Luminescence Dating |work=Geosciences and Environmental Change Science Center |publisher=U.S. Geological Survey |date=26 March 2015 |accessdate=03 June 2017}}</ref> Also note there is often industry crossover with the petrochemical industry, which depends on sound geological science for much of its operations.
 
====LIMSwiki resources====
 
* [[Geoinformatics]]
 
<div align="center"><hr width="50%"></div>
 
===Law enforcement and forensics===
[[File:Day 253 - West Midlands Police - Forensic Science Lab (7969822920).jpg|left|400px]]
{{clear}}
The forensic laboratory is responsible for aiding in crime investigations, helping investigators identify remains, place an alleged killer at a particular crime scene, or identify and characterize crime scene evidence. They also serve as training grounds for future forensic scientists. Less occasionally, forensic laboratories operate as private, third-party contract labs that work with government investigators or private industry to analyze DNA, fire debris, paint, etc. These labs provide many different services, including (but not limited to)<ref name="FBILabServ">{{cite web |url=https://www.fbi.gov/services/laboratory |title=Laboratory Services |publisher=Federal Bureau of Investigation |accessdate=06 June 2017}}</ref><ref name="ArmstrongServ">{{cite web |url=http://www.aflab.com/services/ |title=Forensic Services |publisher=Armstrong Forensic Laboratory, Inc |accessdate=06 June 2017}}</ref><ref name="LSUFACESServ">{{cite web |url=http://www.lsu.edu/faceslab/leo.html#srv" |title=Laboratory Services |publisher=Louisiana State University |accessdate=06 June 2017}}</ref>:
 
* DNA analysis
* fire debris analysis
* metallurgical analysis
* vehicle fluid analysis
* trauma analysis
* skeletal identification
* body fluid identification
* evidence screening
* facial reconstruction
* audio/image enhancement
* carbon dating of remains
 
''How do law enforcement and forensic laboratories intersect the average person's life on a daily basis?'' Your average person won't feel much impact from a forensic lab, at least in a direct sense. Indirectly, forensic labs help capture criminals, which in theory reduces the chances of a criminal running free to cross paths with you. Should you find yourself in the unfortunate situation of requiring the services of a forensic laboratory (whether to help solve a crime that has impacted you or help clear you of wrongdoing), you'll feel the impact more succinctly; this lab depends on tried and true techniques employed by knowledgeable laboratorians to solve crimes and give some measure of peace to those negatively affected by them. Without these labs, we'd arguably have more criminals get away with their crimes, leaving more cases unsolved.
====Client types====
 
'''Private''' - These labs are less common than government and academic labs, but where they do exist, they tend to take on contract analysis and consultation work for a variety of clients.
 
Examples include:
 
* [http://www.aflab.com/ Armstrong Forensic Laboratory]
* [https://www.bodecellmark.com/ Bode Cellmark Forensics]
* [http://www.sigsciforensics.com/ Signature Science]
 
'''Government''' - Government forensic labs make up a significant chunk of the bunch, whether at the federal, state, or local level.
 
Examples include:
 
* [https://www.atf.gov/resource-center/fact-sheet/fact-sheet-atf-laboratory-services U.S. Bureau of Alcohol, Tobacco, Firearms and Explosives, Laboratory Services Division]
* [https://www.fbi.gov/services/laboratory U.S. Federal Bureau of Investigation Laboratory]
* [https://www.secretservice.gov/investigation/ U.S. Secret Service Forensic Laboratory]
 
'''Academic''' - Academic forensic labs may be used by undergraduate students, but they are largely reserved for graduate level training of students. Some university forensic labs may also provide their facilities and services to government agencies and coroner's offices.
 
Examples include:
 
* [http://www.lsu.edu/faceslab/ Louisiana State University's FACES Laboratory]
* [https://polytechnic.purdue.edu/facilities/cyber-forensics-lab Purdue Polytechnic Cyber Forensics Lab]
* [https://www.vgl.ucdavis.edu/forensics/ University of California - Davis' Veterinary Genetics Laboratory Forensic Unit]
 
====Functions====
 
''What are the most common functions?'' analytical and teaching
 
''What aspects and/or technologies are being analyzed, researched, and quality controlled?'' biological specimens, bullets and casings, computers, evidence, explosive devices, fingerprints, firearms, ink, insects, pollen and spores, remains
 
''What sciences are being applied in these labs?'' biology, chemistry, cryptography, digital forensics, entomology, forensic anthropology, forensic engineering, forensic imaging, forensic odontology, medical science, molecular biology, physics, psychology, toxicology, veterinary forensics
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Age determination, Amino acid analysis, Biomolecular, Counterfeit detection, Cross-drive, DNA profiling, Failure, File carving, Fire debris, Forensic toxicology, Gunshot residue, Isotope analysis, Proficiency, Solubility
 
'''Industry-related lab equipment may include''':
 
balance, binocular microscope, blood analyzer, burette, centrifuge, chemical storage cabinet, chromatographic, compound microscope, confocal microscope, cryostat, elecrophoresis equipment, evaporator, evidence drying cabinet, extractor, fingerprint development chamber, fluorescent plate reader, freezers and refrigerators, FTIR microscope, fume hood, fuming chamber, graphite furnace, hyperspectral imaging system, microplate handler, microscope, microtome, PCR system, refractometer, spectrometer, spectrophotometer, stereo microscope, viscometer
 
''What else, if anything, is unique about the labs in the law enforcement and forensics industry?'' Forensic science is significantly cross-discipline in nature, with anthropology, biology, chemistry, cryptography, entomology, medical science, toxicology, and a host of other disciplines getting involved with the analysis and characterization of a wide variety of evidence types. As such, gaps may exist in knowledge and know-how in some areas of analysis, requiring the recruitment of outside help for more esoteric analyses.<ref name="NRCStrength09">{{cite book |title=Strengthening Forensic Science in the United States: A Path Forward |author=National Research Council |publisher=National Academies Press |year=2009 |pages=348 |doi=10.17226/12589 |url=https://www.nap.edu/catalog/12589/strengthening-forensic-science-in-the-united-states-a-path-forward}}</ref>
 
====LIMSwiki resources====
 
* [[Forensic science]]
 
<div align="center"><hr width="50%"></div>
 
===Life sciences and biotechnology===
[[File:PAPRs in use 01.jpg|left|400px]]
{{clear}}
Life sciences is a broad category of scientific disciplines associated with the study of living organisms. Studies at the molecular level as well as the use of living systems and organisms to make products for human purposes (biotechnology) have expanded the concept of life sciences even further. Biological and health sciences are at the heart of life science and biotechnology laboratories, with a broad array of branches/disciplines falling under the umbrella. From the plant experiments and analyses at Space Florida's Space Sciences Lab<ref name="SFSLSL">{{cite web |url=http://www.spaceflorida.gov/why-florida/facilities/space-life-sciences-lab |title=Space Life Sciences Lab |publisher=Space Florida |accessdate=07 June 2017}}</ref> to the neurological and brain studies at the Neuroinformatics and Brain Connectivity Lab at Florida International University<ref name="FIUNBCL">{{cite web |url=http://neurolab.fiu.edu/ |title=Neuroinformatics and Brain Connectivity Lab |publisher=Florida International University |accessdate=07 June 2017}}</ref>, just about anything to do with living organisms and their components is being analyzed, researched, and synthesized in a life science and biotechnology lab. These laboratories are often research-focused, intent on making discoveries to improve plant, animal, and human life. These labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to):
 
* researching neuropsychiatric disorders<ref name="SFSLSL" />
* researching plant stress tolerances<ref name="FIUNBCL" />
* molecular imaging<ref name="WillardGenomic08">{{cite book |url=https://books.google.com/books?id=5RBXqL7x-bcC&printsec=frontcover |title=Genomic and Personalized Medicine |editor=Willard, H.F.; Ginsburg, G.S. |publisher=Academic Press |year=2008 |pages=1558 |isbn=9780080919034}}</ref>
* gene targeting<ref name="WillardGenomic08" />
* gene base sequence analysis<ref name="WillardGenomic08" />
* antibody analysis<ref name="WillardGenomic08" />
* protein and peptide analysis<ref name="WillardGenomic08" />
* DNA sequencing and fragment analysis<ref name="WillardGenomic08" />
* biomarker discovery and validation<ref name="WillardGenomic08" />
 
''How do life sciences and biotechnology laboratories intersect the average person's life on a daily basis?'' Have you received treatment for cancer? A life science lab was behind the development and/or improvement of that therapy. Have you ever eaten a soybean? The plant that grew it was likely improved in some way by the research at life science lab. From the new medicine you take for your medical condition to the new advances in genetics that allow you to detect disease earlier, don't forget your life has most likely been touched by a life science and biotechnology lab in some way.
 
====Client types====
 
'''Private''' - Some private labs in the life sciences are foundations or institutes, others are companies.
 
Examples include:
 
* [http://foreign.macrogen.co.kr/eng/rnd/bi.html Macrogen Bioinformatics Research Institute]
* [https://neogenomics.com/ NeoGenomics Laboratories]
* [https://www.jax.org/about-us The Jackson Laboratory]
 
'''Government''' - Government-based life science labs are often part of a branch, agency, etc. and have focused goals either as part of the branch/agency or as mandated research from higher up in the government.
 
Examples include:
 
* [https://www.ils.res.in/ India Institute of Life Sciences]
* [http://www.spaceflorida.gov/why-florida/facilities/space-life-sciences-lab Space Florida, Space Life Sciences Lab]
* [https://www.fda.gov/AboutFDA/WorkingatFDA/BuildingsandFacilities/WhiteOakCampusInformation/ucm073522.htm U.S. Food and Drug Administration, White Oak Campus, Life Sciences Laboratory I]
 
'''Academic''' - These labs are typically graduate-level and act as hotbeds for researchers of all types.
 
Examples include:
 
* [http://neurolab.fiu.edu/ Florida International University's Neuroinformatics and Brain Connectivity Laboratory]
* [http://soybeangenomics.missouri.edu/ University of Missouri's Molecular Genetics and Soybean Genomics Laboratory]
* [http://crl.berkeley.edu/ University of California - Berkeley's Cancer Research Laboratory]
 
====Functions====
 
''What are the most common functions?'' analytical, research/design, QA/QC, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' biological specimens, cancers, DNA, genes, organs and systems, plant materials, proteins
 
''What sciences are being applied in these labs?'' anatomy, bioinformatics, biology, botany, cardiology, genetics, genomics, hematology, kinesiology, medical imaging, microbiology, molecular biology, nephrology, neurology, oncology, pathology, physiology, proteomics, pulmonology, toxicology, and many more
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Absorption, Adhesion, Age determination, Aging, Amino acid analysis, Antimicrobial, Antigen, Biomolecular, C- and N-terminal, Carcinogenicity, Circular dichroism, Colorimetric, Compression, Cytology, De novo protein, Degradation, Detection, Developmental and reproductive toxicology, Dietary exposure, Disulfide bridge, DNA hybridization, Electrophoresis, Genotype, Identification, Isotope analysis, Macro- and microstructure, Microfluidics, Minimum bactericidal concentration, Minimum inhibitory concentration, Molecular weight, Pathogenicity, Peptide mapping, Post-translational modification, Proficiency, Protein analysis, Protein characterization, Terrestrial toxicology
 
'''Industry-related lab equipment may include''':
 
balance, bioreactor, biosafety cabinet, cell counter, centrifuge, DNA sequencer, dry bath, electrophoresis equipment, Erlenmeyer flask, flow cytometer, freezer, fume hood, gel documentation system, immunoassay system, incubator, laminar flow cabinet, microplate equipment, mixer/shaker, molecular imager, osmometer, PCR workstation, pipettor, protein sequencer, reagents, spectrometer, spectrophotometer, thermal cycler
 
''What else, if anything, is unique about the labs in the life sciences and biotechnology industry?'' Many laboratories in the life sciences and biotechnology sector are funded by significant external investments, grants, and initial public offerings (IPOs). For example, the National Institutes of Health awarded 7,328 grants worth a total of $3.3 billion to California life science labs in 2014.<ref name="CLSACalif16">{{cite web |url=http://califesciences.org/member-resources/industry-intelligence/2016report/ |title=California Life Sciences Industry 2016 Report |author=California Life Sciences Association |date=2016 |accessdate=08 June 2017}}</ref> Others turn to private charitable foundations or even biotech and pharmaceutical companies to help fund research efforts.<ref name="GrantFollow15">{{cite web |url=http://www.the-scientist.com/?articles.view/articleNo/42799/title/Follow-the-Funding/ |title=Follow the Funding |author=Grant, B. |work=The Scientist |publisher=LabX Media Group |date=01 May 2015 |accessdate=08 June 2017}}</ref>
 
====LIMSwiki resources====
 
'''Life sciences'''
* [[Biodiversity informatics]]
* [[Cancer informatics]]
* [[Genome informatics]]
* [[Genomics]]
* [[Life sciences industry]]
* [[Life sciences life cycle]]
* [[Neuroinformatics]]
 
'''Bioinformatics'''
* [[Bioinformatics]]
* [[Bioimage informatics]]
* [[Biotechnology]]
* [[Molecular informatics]]
 
<div align="center"><hr width="50%"></div>
 
===Logistics===
[[File:AMS-02 Transport.png|left|400px]]
{{clear}}
Laboratories related to the logistics industry serve several different functions. Academic research laboratories are key to the analysis and development of transportation systems and safety, traffic models, geographic information systems, freight logistics systems, supply chains, and transit systems. Secondarily, private logistics labs may provide third-party analytical services on cargo to verify authenticity and assist in custody transfers. These labs are found in the private and academic sectors, and occasionally in government, providing many different services, including (but not limited to):
 
* analysis of cargo for custody transfer<ref name="CertispecLab">{{cite web |url=https://certispec.myshopify.com/products/laboratory-services |title=Laboratory Services |publisher=Certispec Services, Inc |accessdate=08 June 2017}}</ref>
* analysis of cargo for dispute resolution<ref name="CertispecLab" />
* detection of radiation<ref name="SavannahAnal">{{cite web |url=http://srnl.doe.gov/facilities/analytical.htm |title=Our Facilities - Analytical Laboratories |work=Savannah River National Laboratory |publisher=SRNS Corporate Communications |accessdate=08 June 2017}}</ref>
* detection of explosives and evaluation of detection tools<ref name="HS-TSL">{{cite web |url=https://www.dhs.gov/science-and-technology/transportation-security-laboratory |title=Transportation Security Laboratory |publisher=U.S. Department of Homeland Security |accessdate=08 June 2017}}</ref>
* development and improvement of material flow management components<ref name="HNULogiLab">{{cite web |url=https://www.hs-neu-ulm.de/en/research/centres-at-the-hnu/logistics/logistics-laboratory/ |title=HNU Logistics Laboratory |publisher=Neu-Ulm University of Applied Sciences |accessdate=08 June 2017}}</ref><ref name="TTLOGLab">{{cite web |url=http://ttlog.civ.uth.gr/the-laboratory/ |title=The Laboratory |publisher=University of Thessaly, Department of Civil Engineering |accessdate=08 June 2017}}</ref>
* development and improvement of transportation and routing policies<ref name="HNULogiLab" /><ref name="TTLOGLab" />
* modeling and analysis of traffic and driving behavior<ref name="HNULogiLab" /><ref name="TTLOGLab" />
* analysis of logistics data<ref name="HNULogiLab" /><ref name="TTLOGLab" />
 
''How do logistics laboratories intersect the average person's life on a daily basis?'' Research-based logistics labs produce laboratorians who, for example, may be knowledgeable in the ways of traffic flow and civil engineering. Those individuals may go on to learn more and provide contributions to the transportation department of a city, state, or even federal entity, finding ways to improve your daily commute to work. Those same laboratorians may also have background and experience with electric and self-driving vehicles, contributing their expertise to the growing infrastructure required to run self-driving vehicles effectively, again improving your commute. Secondarily, logistics laboratories may reduce the changes of dangerous materials such as malicious radioactive materials and explosive devices making their way into the country via port, which is beneficial to dock workers and end users of products.
 
====Client types====
 
'''Private''' - Private logistics labs tend to provide analytical testing services of cargo, facilitating custody transfers and providing expertise in legal disputes.
 
Examples include:
 
* [http://www.bureauveritas.com/home/about-us/our-business/commodities/your-industry/marine/ Bureau Veritas Commodoties]
* [http://www.camincargo.com/agassi/laboratoryservices.aspx Camin Cargo Control]
* [https://certispec.myshopify.com/products/laboratory-services Cetispec Services]
 
'''Government''' - Governments occasionally engage in research into and investigation of logistics issues of a region or country.
 
Examples include:
 
* [http://srnl.doe.gov/ Savannah River National Laboratory]
* [https://www.dhs.gov/science-and-technology/transportation-security-laboratory U.S. Department of Homeland Security Transportation Security Laboratory]
 
'''Academic''' - Universities provide laboratory resources to undergraduates and graduates keen to learn more about logistics issues and apply research to real-life problems.
 
Examples include:
 
* [http://www.labtrans.ufsc.br/en Federal University of Santa Catarina's LabTrans Transportation and Logistics Laboratory]
* [https://www.hs-neu-ulm.de/en/research/centres-at-the-hnu/logistics/logistics-laboratory/ Neu-Ulm University of Applied Sciences' Logistics Laboratory]
* [http://ise.utk.edu/lab-center/logistics-transportation-and-supply-chain-engineering-lts-lab/ University of Tennessee - Knoxville's Logistics, Transportation, and Supply Chain Engineering Lab]
 
====Functions====
 
''What are the most common functions?'' analytical, research/design, QA/QC, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' coal and coke, concentrates, fertilizers, food stuffs, land transportation, marine transportation, mass transit systems, petrochemicals, policy and governance, supply chains, traffic, user/driving behavior, vegetable oils, waste water
 
''What sciences are being applied in these labs?'' data science, economics, engineering, logistics, management, mathematics, physics, process optimization, risk management, social science, statistics
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Absorption, Accelerated stress testing, Cargo inspection and sampling, Climatics, Contamination, Corrosion, Counterfeit detection, Damage tolerance, Dimensional, Drop, Durability, Edge crush, Electromagnetic compatibility, Emissions, Flammability, Flash point, Freight flow, Immersion, Impact, Incline impact, Integrity, Last-mile distribution, Leak, Metallurgical analysis, Permeability, Phytosanitary, Proficiency, Radioactivity, Reliability, Safety, Shear, Shock, Stress corrosion cracking, Tear, Tensile, Thermal, Traffic modeling and analysis, Ultraviolet, Vibration, Weathering
 
'''Industry-related lab equipment may include''':
 
autoclave, balance, biohazard container, biosafety cabinet, centrifuge, chromatographic, colorimeter, computer workstations, desiccator, dry bath, fume hood, [[geographic information system]], homogenizer, hotplate, incubator, magnetic stirrer, microcentrifuge tube, microplate reader, microscope, multi-well plate, orbital shaker, personal protective equipment, pH meter, pipettor, powered air purifying respirators, refractometer, simulation software, spectrophotometer, statistics software, syringes, test tube and rack, thermometer, water bath
 
''What else, if anything, is unique about the labs in the clinical research industry?'' A majority of logistics laboratories are dry labs, meaning they're not analyzing "wet" biological samples, applying reagents, etc. Instead they often heavily rely on software systems to conduct their research and educate new students. However, wet labs do exist in the logistics industry, usually for product and commodity testing of shipments — often petrochemicals — for custody transfer and dispute resolution.<ref name="CertispecLab" />
 
 
====LIMSwiki resources====
 
* None
 
<div align="center"><hr width="50%"></div>
 
===Manufacturing and R&D===
[[File:Assembly Line in America.JPG|left|400px]]
{{clear}}
A manufacturing and R&D laboratory is what it sounds like: a lab associated with the manufacturing process as well as the research and development (R&D) activities that come before it. These labs can be found as part of the company structure, inside a manufacturing facility or separate from one. They may also appear as independent, third-party businesses that contract their services and expertise out to manufacturers and inventors who don't have their own laboratory resources or design knowledge.
 
It's important to note that when looking at many of the other industry categories in this guide, prior and after, you should notice serious crossover with manufacturing and R&D. In fact, laboratories associated with the automotive, aerospace, and marine; food and beverage; and pharmaceutical industries are almost entirely affiliated with manufacturing and R&D activities. As such, you may notice some redundancy in the test types listed below and those listed in the previously mentioned industry sections. This section is focused on manufacturing and R&D in a more generic, all-encompassing way.
 
These labs are found heavily in the private sector. Some labs may also appear in the government as part of state-funded effort, and others show up in the academic departments of some universities as an extension of their graduate-level research programs. Manufacturing and R&D laboratories provide many different services, including (but not limited to)<ref name="DuesterbergUSMan03">{{cite web |url=https://books.google.com/books?id=KrU4Bu8pw8AC&printsec=frontcover |title=U.S. Manufacturing: The Engine for Growth in a Global Economy |editor=Duesterberg, T.J.; Preeg, E.H. |publisher=Greenwood Publishing Group |year=2003 |pages=249 |isbn=9780275980412}}</ref>:
 
* development of advanced materials for manufacturing
* reverse engineering of products
* miniaturization of products
* analysis of shelf life
* quality control testing
* biocompatibility testing
* comparison testing
* formulation of recipes
* characterization of materials
* review and evaluation of designs
* innovation of manufacturing processes
 
''How do manufacturing and R&D laboratories intersect the average person's life on a daily basis?'' Unless you live a life of simplicity, growing and making your own food and materials, free of the industrial world, you most likely already know your life is touched by manufacturing and R&D labs on a daily basis. The mobile phone you use, the vehicle you drive or ride in, the pre-packaged food you eat, and the pharmaceuticals you take largely exist because scientists in a laboratory — wet or dry — designed, tested, and quality controlled it. Without these labs, the industrial and technological world you know today would fall apart rapidly.
 
====Client types====
 
'''Private''' - Private manufacturing and R&D labs are a staple of the industry, putting people's ideas to work. From a company's internal labs to third-party contract labs, much of the research, development, and quality control activities in manufacturing runs through here.
 
Examples include:
 
* [http://www.covestro.com/en/innovation/overview Covestro]
* [http://www.lddavis.com/about-us/lab-capabilities/ L. D. Davis]
* [http://www.solvay.com/en/company/innovation/our-research/our-ri-centers/laboratory-of-the-future.html Solvay]
 
'''Government''' - While not super common, government at times sets up and/or funds laboratories that are dedicated to advancing the field of manufacturing through new and improved fabrication and engineering techniques.
 
Examples include:
 
* [http://www.anff-nsw.org/category1/epitaxial-growth-laboratory/ Australian National Fabrication Facility, NSW Node, Epitaxial Growth Laboratory]
* [http://web.ornl.gov/sci/manufacturing/about/ Lawrence Livermore National Laboratory, Advanced Manufacturing Division]
* [http://web.ornl.gov/sci/manufacturing/about/ Oak Ridge National Laboratory, Manufacturing Demonstration Facility]
 
'''Academic''' - These laboratories are typically part of a graduate research program, training future engineers and laboratorians while spawning new ideas. As seen with the examples below, the focus on learning and researching manufacturing processes may specialize into specific industries such as food and beverage or nanotechnology.
 
Examples include:
 
* [https://foodscience.cals.cornell.edu/about-us/facilities/ithaca-facilities/food-processing-and-development-laboratory Cornell University's Food Processing and Development Laboratory]
* [https://lmp.mit.edu/ Massachusetts Institute of Technology's Laboratory for Manufacturing and Productivity]
* [http://www.min.uc.edu/ucman University of Cinicnnati's Micro and Nano Manufacturing Laboratory]
 
====Functions====
 
''What are the most common functions?'' analytical, research/design, QA/QC, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' The list is seemingly infinite, but a few examples include adhesives, battery electrolytes, ceramics, fiber composites, food preservatives, lubricants, metals, nutritional supplements, plant extracts, polymers, rocket engines, semiconductors, and valves.
 
''What sciences are being applied in these labs?'' Again, the list is long, and the type of science used will depend on what is being developed. The most obvious scientific disciplines include all types and variations of biology, biomechanics, chemistry, engineering, food science, materials science, mathematics, molecular science, nanoscience, and physics.
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Absorption, Accelerated stress testing, Accelerated weathering, Acceleration, Acoustical, Acute contact, Acute oral, Acute toxicity, Adhesion, Aging, Alcohol level, Allergy, Altitude, Antimicrobial, Artificial pollution, Ash, Bioavailability, Bioburden, Biocompatibility, Biodegradation, Biomechanical, Biosafety, Boiling - freezing - melting point, Calorimetry, Carcinogenicity, Case depth, Characterization, Chemical and materials compatibility, Chronic toxicity, Cleanliness, Climatics, Combustion, Compaction, Comparative Tracking Index, Comparison, Compliance/Conformance, Composition, Compression, Conductivity, Contact mechanics, Contamination, Corrosion, Cytotoxicity, Damage tolerance, Deformulation, Degradation, Design review and evaluation, Design verification testing, Detection, Dielectric withstand, Dimensional, Discoloration, Disintegration, Dissolution, Dissolved gas, Drop, Dynamics, Edge crush, Efficacy, Efficiency, Electromagnetic compatibility, Electromagnetic interference, Electrostatic discharge, Elongation, Emissions, Endotoxin, Endurance, Environmental fate, Environmental metabolism, Environmental stress-cracking resistance, Ergonomics, Etching, Expiration dating, Extractables and leachables, Failure, Fatigue, Fault simulation, Flammability, Flash point, Flavor, Fluid dynamics, Fluorescence, Formulation, Fragrance, Friction, Functional testing, Genotoxicity, Grain and particle size, Hazard analysis, Heat resistance, Human factors, Hydraulic, Identification, Immersion, Impact, Impurity, Incident analysis, Incline impact, Inclusion, Inflatability, Ingredient, Ingress, Inhalation, Integrity, Irritation, Iterative, Labeling, Leak, Lightning, Load, Lot release, Lubricity, Macroetch, Macro- and microstructure, Mechanical, Mechanical durability, Metallurgical analysis, Microfluidics, Minimum bactericidal concentration, Minimum inhibitory concentration, Mobility, Moisture, Molecular weight, Mutagenicity, Nanoparticulate, Neurotoxicity, Nutritional, Optical, Oxidation reduction potential, Oxidation stability, Passivation, Pathogen, Penetration, Performance, Permeability, pH, Pharmacokinetic, Photometric, Photostability, Phototoxicity, Plant metabolism, Plating and coating evaluations, Polarimetry, Power quality, Preservative challenge, Pressure, Process safety, Proficiency, Purity, Pyrogenicity, Qualification, Quality control, Radioactivity, Radiochemical, Reflectance, Refractive index, Reliability, Resistance - capacitance - inductance, Safety, Sanitation, Saponification value, Seismic, Sensory, Shear, Shelf life, Shock, Smoke point, Solar, Stability, Sterility, Stress corrosion cracking, Subchronic toxicity, Surface topography, Tear, Tensile, Thermal, Torque, Total viable count, Ultraviolet, Usability, Validation, Velocity and flow, Verification, Vibration, Visibility, Viscosity, Voltage, Weathering, Water activity
 
'''Industry-related lab equipment may include''':
 
Like materials tested and sciences applied, the lab equipment of a manufacturing and R&D lab will vary based upon what is being designed, tested, and quality controlled. Food R&D is going to depend on a somewhat different set of laboratory tools than say a lab developing a jet engine, pharmaceutical, or mobile phone.
 
''What else, if anything, is unique about the labs in the manufacturing and R&D industry?'' When it comes to labs that are prevalent but behind the scenes, manufacturing and R&D laboratories stand out. It's easy to take for granted the products we use in our lives; most of the time they taste good, function as expected, or cause the desired effect. That's not to say that shoddy laboratory processes, equipment, and raw materials don't produce bad tasting, non-functional, poorly advertised products because they do; the lab is only part of the equation. But in our industrialized, technological world, we shouldn't forget just how ubiquitous these sorts of labs are. In U.S. colleges and universities alone, 211.8 million net assignable square feet of research space were set aside in 2013 for laboratories, panels, and test rooms to conduct research in all types of sciences, clinical and R&D.<ref name="NSBScience16">{{cite web |url=https://www.nsf.gov/statistics/2016/nsb20161/#/report |title=Science & Engineering Indicators 2016 |author=National Science Board |publisher=National Science Foundation |volume=NSB-2016-1 |date=2016 |accessdate=08 June 2017}}</ref> Now think about how many private businesses are doing the same thing? Put together, the National Science Board estimated that U.S. R&D activities totaled $456.1 billion in 2013.<ref name="NSBScience16" />
 
====LIMSwiki resources====
 
* [[Biomedical engineering]]
* [[Clinical engineering]]
* [[Materials informatics]]
 
<div align="center"><hr width="50%"></div>


==References==
==References==
{{Reflist|colwidth=30em}}
{{Reflist|colwidth=30em}}
<!--Place all category tags here-->

Latest revision as of 23:51, 20 September 2023

Sandbox begins below

1. Introduction to materials and materials testing laboratories

What is a material? This question is surprisingly more complex for the layperson than may be expected. The definition of "material" has varied significantly over the years, dependent on the course of study, laboratory, author, etc. A 1974 definition by Richardson and Peterson that has seen some use in academic study defines a material as "any nonliving matter of academic, engineering, or commercial importance."[1] But recently biomaterials like biopolymers (as replacements for plastics)[2] and even natural[3] and engineered biological tissues[4] may be referenced as "materials." (And to Richardson and Peterson's credit, they do add in the preface of their 1974 work that "[a]lthough the volumes are directed toward the physical sciences, they can also be of value for the biological scientist with materials problems."[5] A modern example would be biodegradable materials research for tissue and medical implant engineering.[6]) Yet today more questions arise. what of matter that doesn't have "academic, engineering, or commercial importance"; can it now be called a "material" in 2023? What if a particular matter exists today but hasn't been thoroughly studied to determine its value to researchers and industrialists? Indeed, the definition of "material" today is no easy task. This isn't made easier when even modern textbooks introduce the topic of materials science without aptly defining what a material actually is[7], let alone what materials science is.[8] Perhaps the writers of said textbooks assume that the definitions of "material" and "materials science" have a "well duh" response.

To complicate things further, a material can be defined based upon the context of use. Take for example the ISO 10303-45 standard by the International Organization for Standardization (ISO), which addresses the representation and exchange of material and product manufacturing information in a standardized way, specifically describing how material and other engineering properties can be described in the model/framework.[9][10] The context here is "standardized data transfer of material- and product-related data," which in turn involves ontologies that limit the complexity of materials science discourse and help better organize materials and product data into information and knowledge. As such, the ISO 10303 set of standards must define "material," and 10303-45 complicates matters further in this regard (though it will be helpful for this guide in the end).

In reviewing ISO 10303-45 in 2009, Swindells notes the following about the standard[10]:

The first edition of ISO 10303-45 was derived from experience of the testing of, so-called, "materials" properties, and the terminology used in the standard reflects this experience. However, the information modelling of an engineering material, such as alloyed steel or high density polyethylene, is no different from the information modelling of a "product." The "material" properties are therefore one of the characteristics of a product, just as its shape and other characteristics are. Therefore all "materials" are products, and the information model in ISO 10303-45 can be used for any property of any product.

Put in other words, for the purposes of defining "material" for a broader, more standardized ontology, materials and products can be viewed as interchangeable. Mies puts this another way, stating that based on ISO 10303-45, a material can be defined as "a manufactured object with associated properties in the context of its use environment."[11] But this representation only causes more confusion as we ask "does a material have to be manufactured?" After all, we have the term "raw material," which the Oxford English Dictionary defines as "the basic material from which a product is manufactured or made; unprocessed material."[12] Additionally, chemical elements are defined as "the fundamental materials of which all matter is composed."[13] Taking into account the works of Richardson and Peterson, Mies, and Swindells, as well as ISO 10303-45, the concepts of "raw materials" and "chemical elements," and modern trends towards the inclusion of biomaterials (though discussion of biomaterials will be limited here) in materials science, we can land on the following definition for the purposes of this guide:

A material is discrete matter that is elementally raw (e.g., native metallic and non-metallic elements), fundamentally processed (e.g., calcium oxide), or fully manufactured (by human, automation, or both; e.g., a fastener) that has an inherent set of properties that a human or automation-driven solution (e.g., an artificial intelligence [AI] algorithm) has identified for a potential or realized use environment.

First, this definition more clearly defines the types of matter that can be included, recognizing that manufactured products may still be considered materials. Initially this may seem troublesome, however, in the scope of complex manufactured products such as automobiles and satellites; is anyone really referring to those types of products as "materials"? As such, the word "discrete" is included, which in manufacturing parlance refers to distinct components such as brackets and microchips that can be assembled into a greater, more complex finished product. This means that while both a bolt and an automobile are manufactured "products," the bolt, as a discrete type of matter, can be justified as a material, whereas the automobile can't. Second—answering the question of "what if a particular matter exists today but hasn't been thoroughly studied to determine its value to researchers and industrialists?"—the definition recognizes that the material needs at a minimum recognition of a potential use case. This turns out to be OK, because if no use case has been identified, the matter still can be classified as an element, compound, or substance. It also insinuates that that element, compound, or substance with no use case isn't going to be used in the manufacturing of any material or product. Third, the definition also recognizes the recent phenomena of autonomous systems discovering new materials and whether or not those autonomous systems should be credited with inventorship.[14] The question of inventorship is certainly worth discussion, though it is beyond the scope of this guide. Regardless, the use of automated systems to match a set of properties of a particular matter to a real-world use case isn't likely to go away, and this definition accepts that likelihood.

Finally, this leads us to the realization that materials, by definition, are inherently linked to the act of intentional human- or automation-driven creation, i.e., manufacturing and construction.


1.1 Materials testing labs, then and now

1.1.1 Materials testing 2.0


1.2 Industries, products, and raw materials

1.3 Laboratory roles and activities in the industry

1.3.1 R&D roles and activities

1.3.2 Pre-manufacturing and manufacturing roles and activities

1.3.3 Post-production quality control and regulatory roles and activities

References

  1. Richardson, James H.; Peterson, Ronald V. (1974). "Chapter 1: Introduction to Analytical Methods". Systematic Materials Analysis, Part 1. Materials science series. New York: Academic Press. p. 2. doi:10.1016/B978-0-12-587801-2.X5001-0. ISBN 978-0-12-587801-2. https://books.google.com/books?id=BNocpYI8gJkC&printsec=frontcover&dq=Systematic+Materials+analysis&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjB1OeQx-aAAxWnmmoFHSV2BSsQ6AF6BAgMEAI#v=onepage&q=Systematic%20Materials%20analysis&f=false. 
  2. Das, Abinash; Ringu, Togam; Ghosh, Sampad; Pramanik, Nabakumar (1 July 2023). "A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers" (in en). Polymer Bulletin 80 (7): 7247–7312. doi:10.1007/s00289-022-04443-4. ISSN 0170-0839. PMC PMC9409625. PMID 36043186. https://link.springer.com/10.1007/s00289-022-04443-4. 
  3. Kurniawan, Nicholas A.; Bouten, Carlijn V.C. (1 April 2018). "Mechanobiology of the cell–matrix interplay: Catching a glimpse of complexity via minimalistic models" (in en). Extreme Mechanics Letters 20: 59–64. doi:10.1016/j.eml.2018.01.004. https://linkinghub.elsevier.com/retrieve/pii/S2352431617301864. 
  4. Kim, Hyun S.; Kumbar, Sangamesh G.; Nukavarapu, Syam P. (1 March 2021). "Biomaterial-directed cell behavior for tissue engineering" (in en). Current Opinion in Biomedical Engineering 17: 100260. doi:10.1016/j.cobme.2020.100260. PMC PMC7839921. PMID 33521410. https://linkinghub.elsevier.com/retrieve/pii/S246845112030057X. 
  5. Richardson, James H.; Peterson, Ronald V. (1974). "Preface". Systematic Materials Analysis, Part 1. Materials science series. New York: Academic Press. p. xiii. doi:10.1016/B978-0-12-587801-2.X5001-0. ISBN 978-0-12-587801-2. https://books.google.com/books?id=BNocpYI8gJkC&printsec=frontcover&dq=Systematic+Materials+analysis&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjB1OeQx-aAAxWnmmoFHSV2BSsQ6AF6BAgMEAI#v=onepage&q=Systematic%20Materials%20analysis&f=false. 
  6. Modrák, Marcel; Trebuňová, Marianna; Balogová, Alena Findrik; Hudák, Radovan; Živčák, Jozef (16 March 2023). "Biodegradable Materials for Tissue Engineering: Development, Classification and Current Applications" (in en). Journal of Functional Biomaterials 14 (3): 159. doi:10.3390/jfb14030159. ISSN 2079-4983. PMC PMC10051288. PMID 36976083. https://www.mdpi.com/2079-4983/14/3/159. 
  7. Callister, William D.; Rethwisch, David G. (2021). "Chapter 1. Introduction". Fundamentals of materials science and engineering: An integrated approach. Hoboken: Wiley. pp. 2–18. ISBN 978-1-119-74773-4. https://books.google.com/books?id=NC09EAAAQBAJ&newbks=1&newbks_redir=0&printsec=frontcover. 
  8. Sutton, Adrian P. (2021). Concepts of materials science (First edition ed.). Oxford [England] ; New York, NY: Oxford University Oress. ISBN 978-0-19-284683-9. 
  9. "ISO 10303-45:2019 Industrial automation systems and integration — Product data representation and exchange — Part 45: Integrated generic resource: Material and other engineering properties". International Organization for Standardization. November 2019. https://www.iso.org/standard/78581.html. Retrieved 20 September 2023. 
  10. 10.0 10.1 Swindells, Norman (2009). "The Representation and Exchange of Material and Other Engineering Properties" (in en). Data Science Journal 8: 190–200. doi:10.2481/dsj.008-007. ISSN 1683-1470. http://datascience.codata.org/articles/abstract/10.2481/dsj.008-007/. 
  11. Mies, D. (2002). "Chapter 17. Managing Materials Data". In Kutz, Myer. Handbook of materials selection. New York: J. Wiley. p. 499. ISBN 978-0-471-35924-1. https://books.google.com/books?id=gWg-rchM700C&pg=PA499. 
  12. "raw material". Oxford English Dictionary. https://www.oed.com/search/dictionary/?scope=Entries&q=raw+material. Retrieved 20 September 2023. 
  13. Lagowski, J.J.; Mason, B.H.; Tayler, R.J. (16 August 2023). "chemical element". Encyclopedia Britannica. https://www.britannica.com/science/chemical-element. Retrieved 20 September 2023. 
  14. Ishizuki, Naoya; Shimizu, Ryota; Hitosugi, Taro (31 December 2023). "Autonomous experimental systems in materials science" (in en). Science and Technology of Advanced Materials: Methods 3 (1): 2197519. doi:10.1080/27660400.2023.2197519. ISSN 2766-0400. https://www.tandfonline.com/doi/full/10.1080/27660400.2023.2197519.