Difference between revisions of "User:Shawndouglas/sandbox/sublevel35"

From LIMSWiki
Jump to navigationJump to search
Line 3: Line 3:
In the relatively brief time since it has started, the COVID-19 pandemic has brought with it numerous challenges for society to face. How poised is a state and national government to truly lend assistance to its citizens in the face of a crisis? How does the increasing divide between the "haves" and "have nots", and the associated economic structures that lend to them, reveal the fragility of our society? What more can be done to fund epidemiology research? How can we improve our healthcare system to be better equipped to handle communicable disease response and better funded to provide more social services to a broader base of people? And what lessons can be learned from the successes and failures of providing accurate, responsive laboratory testing during pandemics?
In the relatively brief time since it has started, the COVID-19 pandemic has brought with it numerous challenges for society to face. How poised is a state and national government to truly lend assistance to its citizens in the face of a crisis? How does the increasing divide between the "haves" and "have nots", and the associated economic structures that lend to them, reveal the fragility of our society? What more can be done to fund epidemiology research? How can we improve our healthcare system to be better equipped to handle communicable disease response and better funded to provide more social services to a broader base of people? And what lessons can be learned from the successes and failures of providing accurate, responsive laboratory testing during pandemics?


We've learned that the family of coronaviruses can be disruptive to humanity with past brushes with SARS and MERS, yet we arguably [https://www.newscientist.com/article/mg24532724-700-we-were-warned-so-why-couldnt-we-prevent-the-coronavirus-outbreak/ haven't done enough] to research these and similar viruses to be more prepared. We were perhaps [https://doi.org/10.1098/rstb.2004.1487 fortunate in some ways] that SARS wasn't worse than it proved to be. However, responses by the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), and other organizations and agencies around the world during the SARS and MERS outbreaks laid the foundations for laboratory testing a novel coronavirus like SARS-CoV-2. R
We've learned that the family of coronaviruses can be disruptive to humanity with past brushes with SARS and MERS, yet we arguably [https://www.newscientist.com/article/mg24532724-700-we-were-warned-so-why-couldnt-we-prevent-the-coronavirus-outbreak/ haven't done enough] to research these and similar viruses to be more prepared. We were perhaps [https://doi.org/10.1098/rstb.2004.1487 fortunate in some ways] that SARS wasn't worse than it proved to be. However, responses by the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), and other organizations and agencies around the world during the SARS and MERS outbreaks laid the foundations for laboratory testing a novel coronavirus like SARS-CoV-2. Reverse transcription PCR (RT-PCR) is again proving to be a useful diagnostic tool for identifying the virus in patient specimens. Other methods such as lateral flow assays (LFA) borrow from more rapid methods of identification, lending support to testing. And while confusing—particularly given the unknowns surrounding the predictive ability of antibodies conferring immunity—serology antibody tests appear to have their place as well.
 
These and related tests can be complex, as evidenced by the CLIA approval status of a strong majority of emergency use authorized (EUA) test kits. Performing these tests on complex instruments and then effectively using the data they provide require clear workflows that can be at least partially automated. This is particularly vital given the paltry 13 percent of CLIA-certified U.S labs that are certified to perform moderate- and high-complexity testing. Additionally, given the value of test result data to governments agencies, epidemiological researchers, and patients, it's important that reporting is clear, timely, and moderated. Laboratory informatics systems such as laboratory information management systems (LIMS) and laboratory information systems (LIS) can go a long way towards ensuring laboratory testing and reporting of commmunicable diseases goes smoothly.
 
 


===4.2 Key guidance documents===
===4.2 Key guidance documents===

Revision as of 20:50, 1 May 2020

4. Final thoughts and additional resources

4.1 Final thoughts

In the relatively brief time since it has started, the COVID-19 pandemic has brought with it numerous challenges for society to face. How poised is a state and national government to truly lend assistance to its citizens in the face of a crisis? How does the increasing divide between the "haves" and "have nots", and the associated economic structures that lend to them, reveal the fragility of our society? What more can be done to fund epidemiology research? How can we improve our healthcare system to be better equipped to handle communicable disease response and better funded to provide more social services to a broader base of people? And what lessons can be learned from the successes and failures of providing accurate, responsive laboratory testing during pandemics?

We've learned that the family of coronaviruses can be disruptive to humanity with past brushes with SARS and MERS, yet we arguably haven't done enough to research these and similar viruses to be more prepared. We were perhaps fortunate in some ways that SARS wasn't worse than it proved to be. However, responses by the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), and other organizations and agencies around the world during the SARS and MERS outbreaks laid the foundations for laboratory testing a novel coronavirus like SARS-CoV-2. Reverse transcription PCR (RT-PCR) is again proving to be a useful diagnostic tool for identifying the virus in patient specimens. Other methods such as lateral flow assays (LFA) borrow from more rapid methods of identification, lending support to testing. And while confusing—particularly given the unknowns surrounding the predictive ability of antibodies conferring immunity—serology antibody tests appear to have their place as well.

These and related tests can be complex, as evidenced by the CLIA approval status of a strong majority of emergency use authorized (EUA) test kits. Performing these tests on complex instruments and then effectively using the data they provide require clear workflows that can be at least partially automated. This is particularly vital given the paltry 13 percent of CLIA-certified U.S labs that are certified to perform moderate- and high-complexity testing. Additionally, given the value of test result data to governments agencies, epidemiological researchers, and patients, it's important that reporting is clear, timely, and moderated. Laboratory informatics systems such as laboratory information management systems (LIMS) and laboratory information systems (LIS) can go a long way towards ensuring laboratory testing and reporting of commmunicable diseases goes smoothly.


4.2 Key guidance documents













4.3 Web portals

4.3.1 U.S. agency portals

4.3.2 U.S. state and territory portals

U.S. territories

4.3.3 Other national and multinational portals

World Health Organization (WHO) and regionals

4.4 Key journal articles


  • Iwen, P.C.; Stiles, K.L.; Pantella, M.A. (2020). "Safety considerations in the laboratory testing of specimens suspected or known to contain the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)". American Journal of Clinical Pathology: aqaa047. doi:10.1093/ajcp/aqaa047. PMID 32190890. 


  • Loeffelholz, M.J.; Tang, T.-W. (2020). "Laboratory diagnosis of emerging human coronavirus infections – The state of the art". Emerging Microbes & Infections 9 (1): 747–56. doi:10.1080/22221751.2020.1745095. PMID 32196430. 


https://www.ecdc.europa.eu/sites/default/files/documents/Overview-rapid-test-situation-for-COVID-19-diagnosis-EU-EEA.pdf

4.5 Public health lab directory

4.6 National and global resources

4.7 Public health laboratory informatics solutions