Bone segment navigation

From LIMSWiki
Jump to navigationJump to search

Bone segment navigation is a surgical method used to find the anatomical position of displaced bone fragments in fractures, or to position surgically created fragments in craniofacial surgery. Such fragments are later fixed in position by osteosynthesis. It has been developed for use in craniofacial and oral and maxillofacial surgery.

Computer-assisted bone segment navigation is defined as the precise three-dimensional positioning of geometrically mapped and mathematically described skeletal segments. These bone segments are osteotomized, fractured or prefabricated according to a surgical plan. The high-precision positioning should have an accuracy of 1 mm and better. Segment navigation should be prepared with plain computed tomography without the implantation of registration markers before CT in order to reduce the number of CTs and operations. The Surgical Segment Navigator SSN was developed at the University of Regensburg with the support of Carl Zeiss. This is the first system to meet these criteria. [1][2]

After an accident or injury, a fracture can be produced and the resulting bony fragments can be displaced. In the oral and maxillofacial area, such a displacement could have a major effect both on facial aesthetics and organ function: a fracture occurring in a bone that delimits the orbit can lead to diplopia; a mandibular fracture can induce significant modifications of the dental occlusion; in the same manner, a skull (neurocranium) fracture can produce an increased intracranial pressure.[3]

In severe congenital malformations of the facial skeleton surgical creation of usually multiple[4][5] bone segments is required with precise movement of these segments to produce a more normal face.

Surgical planning and surgical simulation

An osteotomy is a surgical intervention that consists of cutting through bone and repositioning the resulting fragments in the correct anatomical place. To insure optimal repositioning of the bony structures by osteotomy, the intervention can be planned in advance and simulated. The surgical simulation is a key factor in reducing the actual operating time. Often, during this kind of operation, the surgical access to the bone segments is very limited by the presence of the soft tissues: muscles, fat tissue and skin - thus, the correct anatomical repositioning is very difficult to assess, or even impossible. Preoperative planning and simulation on models of the bare bony structures can be done. An alternate strategy is to plan the procedure entirely on a CT scan generated model and output the movement specifications purely numerically.[6]

Materials and devices needed for preoperative planning and simulation

The osteotomies performed in orthognathic surgery are classically planned on cast models of the tooth-bearing jaws, fixed in an articulator. For edentulous patients, the surgical planning may be made by using stereolithographic models. These tridimensional models are then cut along the planned osteotomy line, slid and fixed in the new position. Since the 1990s, modern techniques of presurgical planning were developed – allowing the surgeon to plan and simulate the osteotomy in a virtual environment, based on a preoperative CT or MRI; this procedure reduces the costs and the duration of creating, positioning, cutting, repositioning and refixing the cast models for each patient.

Transferring the preoperative planning to the operating theatre

Schematic representation of the principle of bone segment navigation; DRF1 and DRF2 = IR

The usefulness of the preoperative planning, no matter how accurate, depends on the accuracy of the reproduction of the simulated osteotomy in the surgical field. The transfer of the planning was mainly based on the surgeon's visual skills. Different guiding headframes were further developed to mechanically guide bone fragment repositioning. [citation needed]

Such a headframe is attached to the patient's head, during CT or MRI, and surgery. There are certain difficulties in using this device. First, exact reproducibility of the headframe position on the patient's head is needed, both during CT or MRI registration, and during surgery. The headframe is relatively uncomfortable to wear, and very difficult or even impossible to use on small children, who can be uncooperative during medical procedures. For this reason headframes have been abandoned in favor of frameless stereotaxy of the mobilized segments with respect to the skull base. Intraoperative registration of the patient's anatomy with the computer model is done such that pre-CT placement of fiducial points is not necessary.[citation needed]

Using the SSN in the operating theatre; 1=IR receiver, 2 and 4=IR Reference devices, 3=SSN-Workstation

Surgical Segment Navigator

Initial bone fragment positioning efforts using an electro-magnetic system were abandoned due to the need for an environment without ferrous metals.[7] In 1991 Taylor at IBM working in collaboration with the craniofacial surgery team at New York University developed a bone fragment tracking system based on an infrared (IR) camera and IR transmitters attached to the skull.[8][9] This system was patented by IBM in 1994.[10] At least three IR transmitters are attached in the neurocranium area to compensate the movements of the patient's head. There are three or more IR transmitters are attached to the bones where the osteotomy and bone repositioning is about to be performed onto. The 3D position of each transmitter is measured by the IR camera, using the same principle as in satellite navigation. A computer workstation is constantly visualizing the actual position of the bone fragments, compared with the predetermined position, and also makes real-time spatial determinations of the free-moving bony segments resulting from the osteotomy. Thus, fragments can be very accurately positioned into the target position, predetermined by surgical simulation.

Previous activities

The first clinical report of the use of a navigation system in repositionig osteotomies was by Watzinger et al. in 1997[11] in the reposition of zygoma fractures using a mirrored image from the normal side as a target. However, Watzinger already neglects the three-dimensional geometry and movement of a body in the methodological approach: The zygoma is not displayed three-dimensionally on the monitor of the workstation in its spatial orientation, and it is planned and navigated intraoperatively with a single axial CT layer at the level of the zygomatic arch. This allows an intraoperative statement to be made in principle about the extent to which the position of the sagittal or transverse bone changes in the sagittal or transverse direction, but not whether the bone moves in the axial direction unnoticed during navigation or whether rotational movements of the segment take place in the hidden rotational or transverse plane along the sagittal plane. The result is that the physical position of the zygoma is not detected, and a lifting or lowering of the orbital floor cannot be controlled intraoperatively.[12]

In 1998 Cutting et al.[13] reported use of the system to track multisegment midface osteotomies in major craniofacial malformations and reported an accuracy of only 2 to 4 mm.

References

  1. ^ Marmulla R, Niederdellmann H: Computer-assisted Bone Segment Navigation, J Craniomaxillofac Surg 26: 347-359, 1998
  2. ^ Marmulla, Rüdiger (inventor), Carl Zeiss (submitter): System and method for bone segment navigation. United States Patent 6.241.735, 2001.
  3. ^ Jones B. The effects of patient repositioning on intracranial pressure. Aust J Adv Nurs. 1994 Dec-1995 Feb;12(2):32-9. PMID: 7755934.
  4. ^ Obwegeser, HL (1969). "Surgical correction of small or retrodisplaced maxillae. The "dish-face" deformity". Plast Reconstr Surg. 43 (4): 351–65. doi:10.1097/00006534-196904000-00003. PMID 5776622. S2CID 41856712.
  5. ^ Cutting, C; Grayson, B; Bookstein, F; Kim, H; McCarthy, J (1991). "The case for multiple cranio-maxillary osteotomies in Crouzon's disease.". In Caronni, EP (ed.). Craniofacial Surgery 3. Bologna: Monduzzi Editore. ISBN 9788832300000.
  6. ^ Cutting, C; Bookstein, F; Grayson, B; Fellingham, L; McCarthy, J (1986). "Three dimensional computer aided design of craniofacial surgical procedures: Optimization & interaction with cephalometric and CT-based models". Plast. Reconstr. Surg. 77 (6): 877–87. doi:10.1097/00006534-198606000-00001. PMID 3714886. S2CID 41453653.
  7. ^ Cutting, C; Grayson, B; Kim, H (1990). "Precision multi-segment bone positioning using computer aided methods in craniofacial surgical procedures". Proc. IEEE Eng. Med. Biol. Soc. 12: 1926–7.
  8. ^ Taylor, RH; Cutting, C; Kim, Y; et al. (1991). A Model-Based Optimal Planning and Execution System with Active Sensing and Passive Manipulation for Augmentation of Human Precision in Computer-Integrated Surgery. Toulouse, France: Springer-Verlag. {{cite book}}: |work= ignored (help)
  9. ^ Taylor, RH; Paul, H; Cutting, C; et al. (1992). "Augmentation of Human Precision in Computer Integrated Surgery". Innovation et Technologie en Biologie et Medicine. 13 (4): 450–68.
  10. ^ Taylor, R; Kim, Y (inventors) (1994). Signaling device and method for monitoring positions in a surgical operation. Ossining, NY: United States Patent 5,279,309.
  11. ^ Watzinger, F; Wanschitz, F; Wagner, A; et al. (1997). "Computer-aided navigation in secondary reconstruction of post-traumatic deformities of the zygoma". J Craniomaxillofac Surg. 25 (4): 198–202. doi:10.1016/s1010-5182(97)80076-5. PMID 9268898.
  12. ^ Marmulla R: Computergestützte Knochensegmentnavigation. Quintessenz-Verlag, Berlin 2000.
  13. ^ Cutting, C; Grayson, B; McCarthy, J; et al. (1998). "A virtual reality system for bone fragment positioning in multisegment craniofacial surgical procedures". Plast Reconstr Surg. 102 (7): 2436–43. doi:10.1097/00006534-199812000-00027. PMID 9858182.

Notes

This article is a direct transclusion of the Wikipedia article and therefore may not meet the same editing standards as LIMSwiki. [Category:Medical and surgical techniques]]