Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text.)
(Updated article of the week text)
(48 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Zakutayev SciData2018 5.jpg|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Duncan FrontBioengBiotech2019 7.jpg|240px]]</div>
'''"[[Journal:An open experimental database for exploring inorganic materials|An open experimental database for exploring inorganic materials]]"'''
'''"[[Journal:Cyberbiosecurity: A new perspective on protecting U.S. food and agricultural system|Cyberbiosecurity: A new perspective on protecting U.S. food and agricultural system]]"'''


The use of advanced machine learning algorithms in experimental [[Materials informatics|materials science]] is limited by the lack of sufficiently large and diverse datasets amenable to data mining. If publicly open, such data resources would also enable materials research by scientists without access to expensive experimental equipment. Here, we report on our progress towards a publicly open High Throughput Experimental Materials (HTEM) Database (htem.nrel.gov). This database currently contains 140,000 sample entries, characterized by structural (100,000), synthetic (80,000), chemical (70,000), and optoelectronic (50,000) properties of inorganic thin film materials, grouped in >4,000 sample entries across >100 materials systems; more than a half of these data are publicly available. This article shows how the HTEM database may enable scientists to explore materials by browsing web-based user interface and an application programming interface. This paper also describes a HTE approach to generating materials data and discusses the [[laboratory information management system]] (LIMS) that underpins the HTEM database. Finally, this manuscript illustrates how advanced machine learning algorithms can be adopted to materials science problems using this open data resource. ('''[[Journal:An open experimental database for exploring inorganic materials|Full article...]]''')<br />
Our national data and infrastructure security issues affecting the “bioeconomy” are evolving rapidly. Simultaneously, the conversation about cybersecurity of the U.S. [[Agriculture industry|food and agricultural system]] (cyber biosecurity) is incomplete and disjointed. The food and agricultural production sectors influence over 20% of the nation's economy ($6.7T) and 15% of U.S. employment (43.3M jobs). The food and agricultural sectors are immensely diverse, and they require advanced technologies and efficiencies that rely on computer technologies, big data, [[Cloud computing|cloud-based]] data storage, and internet accessibility. There is a critical need to safeguard the cyber biosecurity of our bioeconomy, but currently protections are minimal and do not broadly exist across the food and agricultural system. Using the food safety management Hazard Analysis Critical Control Point (HACCP) system concept as an introductory point of reference, we identify important features in broad food and agricultural production and food systems: dairy, food animals, row crops, fruits and vegetables, and environmental resources (water). ('''[[Journal:Cyberbiosecurity: A new perspective on protecting U.S. food and agricultural system|Full article...]]''')<br />
<br />
<br />
''Recently featured'':  
''Recently featured'':
: ▪ [[Journal:Broad-scale genetic diversity of Cannabis for forensic applications|Broad-scale genetic diversity of Cannabis for forensic applications]]
: ▪ [[Journal:DAQUA-MASS: An ISO 8000-61-based data quality management methodology for sensor data|DAQUA-MASS: An ISO 8000-61-based data quality management methodology for sensor data]]
: ▪ [[Journal:Arkheia: Data management and communication for open computational neuroscience|Arkheia: Data management and communication for open computational neuroscience]]
: ▪ [[Journal:Security architecture and protocol for trust verifications regarding the integrity of files stored in cloud services|Security architecture and protocol for trust verifications regarding the integrity of files stored in cloud services]]
: ▪ [[Journal:Developing a bioinformatics program and supporting infrastructure in a biomedical library|Developing a bioinformatics program and supporting infrastructure in a biomedical library]]
: ▪ [[Journal:What Is health information quality? Ethical dimension and perception by users|What Is health information quality? Ethical dimension and perception by users]]

Revision as of 16:29, 20 May 2019

Fig1 Duncan FrontBioengBiotech2019 7.jpg

"Cyberbiosecurity: A new perspective on protecting U.S. food and agricultural system"

Our national data and infrastructure security issues affecting the “bioeconomy” are evolving rapidly. Simultaneously, the conversation about cybersecurity of the U.S. food and agricultural system (cyber biosecurity) is incomplete and disjointed. The food and agricultural production sectors influence over 20% of the nation's economy ($6.7T) and 15% of U.S. employment (43.3M jobs). The food and agricultural sectors are immensely diverse, and they require advanced technologies and efficiencies that rely on computer technologies, big data, cloud-based data storage, and internet accessibility. There is a critical need to safeguard the cyber biosecurity of our bioeconomy, but currently protections are minimal and do not broadly exist across the food and agricultural system. Using the food safety management Hazard Analysis Critical Control Point (HACCP) system concept as an introductory point of reference, we identify important features in broad food and agricultural production and food systems: dairy, food animals, row crops, fruits and vegetables, and environmental resources (water). (Full article...)

Recently featured:

DAQUA-MASS: An ISO 8000-61-based data quality management methodology for sensor data
Security architecture and protocol for trust verifications regarding the integrity of files stored in cloud services
What Is health information quality? Ethical dimension and perception by users