Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text.)
(Updated article of the week text)
(427 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Linux kernel API.svg|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Karaattuthazhathu NatJLabMed23 12-2.png|260px]]</div>
An '''[[application programming interface]]''' ('''API''') is a particular set of rules and specifications that software programs can follow to communicate with each other.  It serves as an interface between different software programs and facilitates their interaction, similar to the way the user interface facilitates interaction between humans and computers. An API can be created for applications, libraries, operating systems, etc. as a way of defining their "vocabularies" and resource request conventions (e.g. function-calling conventions). It may include specifications for routines, data structures, object classes, and protocols used to communicate between the consumer program and the implementer program of the API.
'''"[[Journal:Sigma metrics as a valuable tool for effective analytical performance and quality control planning in the clinical laboratory: A retrospective study|Sigma metrics as a valuable tool for effective analytical performance and quality control planning in the clinical laboratory: A retrospective study]]"'''


An API can be generalized for many functions, appearing bundled in the libraries of a programming language, e.g. the Standard Template Library in C++ or the Java API. It can also be function-specific, meant to address a specific problem, e.g. the Google Maps API or the Java API for XML Web Services. Some APIs are language-dependent, meaning they can only use the syntax and elements of a particular language, which makes the API more convenient to use. Of course, an API may also be language-independent, written so that it can be called from several programming languages. This is a desirable feature for a service-oriented API that is not bound to a specific process or system and may be provided as remote procedure calls or web services. ('''[[Application programming interface|Full article...]]''')<br />
For the release of precise and accurate reports of [[Medical test|routine tests]], its necessary to follow a proper [[quality management system]] (QMS) in the [[clinical laboratory]]. As one of the most popular QMS tools for process improvement, Six Sigma techniques and tools have been accepted widely in the [[laboratory]] testing process. Six Sigma gives an objective assessment of analytical methods and instrumentation, measuring the outcome of a process on a scale of 0 to 6. Poor outcomes are measured in terms of defects per million opportunities (DPMO). To do the performance assessment of each clinical laboratory [[analyte]] by Six Sigma analysis and to plan and chart out a better, customized [[quality control]] (QC) plan for each analyte, according to its own sigma value ... ('''[[Journal:Sigma metrics as a valuable tool for effective analytical performance and quality control planning in the clinical laboratory: A retrospective study|Full article...]]''')<br />
 
''Recently featured'':
<br />
{{flowlist |
''Recently featured'': [[Immunoinformatics]], [[Life sciences industry]], [[Chemical industry]]
* [[Journal:Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems|Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems]]
* [[Journal:Data management challenges for artificial intelligence in plant and agricultural research|Data management challenges for artificial intelligence in plant and agricultural research]]
* [[Journal:A blockchain-driven IoT-based food quality traceability system for dairy products using a deep learning model|A blockchain-driven IoT-based food quality traceability system for dairy products using a deep learning model]]
}}

Revision as of 16:52, 29 April 2024

Fig1 Karaattuthazhathu NatJLabMed23 12-2.png

"Sigma metrics as a valuable tool for effective analytical performance and quality control planning in the clinical laboratory: A retrospective study"

For the release of precise and accurate reports of routine tests, its necessary to follow a proper quality management system (QMS) in the clinical laboratory. As one of the most popular QMS tools for process improvement, Six Sigma techniques and tools have been accepted widely in the laboratory testing process. Six Sigma gives an objective assessment of analytical methods and instrumentation, measuring the outcome of a process on a scale of 0 to 6. Poor outcomes are measured in terms of defects per million opportunities (DPMO). To do the performance assessment of each clinical laboratory analyte by Six Sigma analysis and to plan and chart out a better, customized quality control (QC) plan for each analyte, according to its own sigma value ... (Full article...)
Recently featured: