Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text.)
(Updated article of the week text.)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig4 Rodriguez BMCBioinformatics2016 17.gif|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Reisman EBioinformatics2016 12.jpg|240px]]</div>
'''"[[Journal:The systems biology format converter|The systems biology format converter]]"'''
'''"[[Journal:A polyglot approach to bioinformatics data integration: A phylogenetic analysis of HIV-1|A polyglot approach to bioinformatics data integration: A phylogenetic analysis of HIV-1]]"'''


Interoperability between formats is a recurring problem in systems biology research. Many tools have been developed to convert computational models from one format to another. However, they have been developed independently, resulting in redundancy of efforts and lack of synergy.
As [[sequencing]] technologies continue to drop in price and increase in throughput, new challenges emerge for the management and accessibility of genomic sequence data. We have developed a pipeline for facilitating the storage, retrieval, and subsequent analysis of molecular data, integrating both sequence and metadata. Taking a polyglot approach involving multiple languages, libraries, and persistence mechanisms, sequence data can be aggregated from publicly available and local repositories. Data are exposed in the form of a RESTful web service, formatted for easy querying, and retrieved for downstream analyses. As a proof of concept, we have developed a resource for annotated HIV-1 sequences. Phylogenetic analyses were conducted for >6,000 HIV-1 sequences revealing spatial and temporal factors influence the evolution of the individual genes uniquely. Nevertheless, signatures of origin can be extrapolated even despite increased globalization. The approach developed here can easily be customized for any species of interest. ('''[[Journal:A polyglot approach to bioinformatics data integration: A phylogenetic analysis of HIV-1|Full article...]]''')<br />
 
Here we present the System Biology Format Converter (SBFC), which provide a generic framework to potentially convert any format into another. The framework currently includes several converters translating between the following formats: SBML, BioPAX, SBGN-ML, Matlab, Octave, XPP, GPML, Dot, MDL and APM. This software is written in Java and can be used as a standalone executable or web service. The SBFC framework is an evolving software project. Existing converters can be used and improved, and new converters can be easily added, making SBFC useful to both modellers and developers. The source code and documentation of the framework are freely available from the project web site. ('''[[Journal:The systems biology format converter|Full article...]]''')<br />
<br />
<br />
''Recently featured'':  
''Recently featured'':  
: ▪ [[Journal:The systems biology format converter|The systems biology format converter]]
: ▪ [[Journal:Chemozart: A web-based 3D molecular structure editor and visualizer platform|Chemozart: A web-based 3D molecular structure editor and visualizer platform]]
: ▪ [[Journal:Chemozart: A web-based 3D molecular structure editor and visualizer platform|Chemozart: A web-based 3D molecular structure editor and visualizer platform]]
: ▪ [[Journal:Perceptions of pathology informatics by non-informaticist pathologists and trainees|Perceptions of pathology informatics by non-informaticist pathologists and trainees]]
: ▪ [[Journal:Perceptions of pathology informatics by non-informaticist pathologists and trainees|Perceptions of pathology informatics by non-informaticist pathologists and trainees]]
: ▪ [[Journal:A pocket guide to electronic laboratory notebooks in the academic life sciences|A pocket guide to electronic laboratory notebooks in the academic life sciences]]

Revision as of 15:18, 5 July 2016

Fig1 Reisman EBioinformatics2016 12.jpg

"A polyglot approach to bioinformatics data integration: A phylogenetic analysis of HIV-1"

As sequencing technologies continue to drop in price and increase in throughput, new challenges emerge for the management and accessibility of genomic sequence data. We have developed a pipeline for facilitating the storage, retrieval, and subsequent analysis of molecular data, integrating both sequence and metadata. Taking a polyglot approach involving multiple languages, libraries, and persistence mechanisms, sequence data can be aggregated from publicly available and local repositories. Data are exposed in the form of a RESTful web service, formatted for easy querying, and retrieved for downstream analyses. As a proof of concept, we have developed a resource for annotated HIV-1 sequences. Phylogenetic analyses were conducted for >6,000 HIV-1 sequences revealing spatial and temporal factors influence the evolution of the individual genes uniquely. Nevertheless, signatures of origin can be extrapolated even despite increased globalization. The approach developed here can easily be customized for any species of interest. (Full article...)

Recently featured:

The systems biology format converter
Chemozart: A web-based 3D molecular structure editor and visualizer platform
Perceptions of pathology informatics by non-informaticist pathologists and trainees