Difference between revisions of "User:Shawndouglas/sandbox/sublevel1"

From LIMSWiki
Jump to navigationJump to search
Line 1: Line 1:
What exactly is a [[laboratory information system]] (LIS) or [[laboratory information management system]] (LIMS) anyway? Do I need one? What options are available and how do I compare them? What about a request for information (RFI), request for proposal (RFP), or request for quotation (RFQ)? These are questions [[laboratory]] professionals typically ponder upon finding themselves charged with the mission of finding software for their lab. For many the task can be a daunting proposition.
Your laboratory's [[workflow]], instruments, data management requirements, budget, technological expertise, business goals, and risk tolerances will all play a role in deciding what technology to invest in. The [[Physician office laboratory|physician office lab]] (POL), with its easy-to-use point-of-care testing and relatively simplified laboratory procedures, will invest significantly less into analyzers, instruments, and laboratory software than the molecular diagnostics laboratory, for example. As such, look at your laboratory's short- and long-term goals, budget, workflow, and regulatory requirements to gain a better understanding of what technology will be involved.


You may know the workflow-related needs of your laboratory, but perhaps you don't know much about [[Information management|data management]] solutions like LIS and LIMS, leaving you intimidated by all the options. You'll first need to gauge your lab's informatics needs in order to determine which products are worth investigating further. Of course your lab's analysis requirements, reporting and data sharing constraints, instrument interfacing needs, [[Barcode|barcoding]] and tracking requirements, quality assurance processes, etc. are very important factors. But these systems vary in numerous ways, and other important factors exist. Price should certainly be considered, although value is ultimately more important than a low price. Other important questions that get asked include:
First, what are the laboratory's goals? Does the laboratory owner envision a small investment, taking in a slow but steady flow of simple clinical tests of human fluids, or expansive growth, expanding into multiple testing domains? If the lab is starting small but is confidently expecting to grow, technological investments early on may want to take into account future technologies that may shape data management and security processes. Second, what kind of work will the lab be doing, and what regulatory responsibilities will guide hardware and software investment at the lab? If your lab will be testing medical cannabis for the state or province's associated program, you'll be considering [[chromatography]] and [[spectroscopy]] instruments, as well as regulatory requirements for complete track-and-trace activities, including reporting. The [[public health laboratory]] will likely have many more instruments to cover all its testing needs, and its data management system will likely need to be able to use the [[Centers for Disease Control and Prevention]]'s PHIN Messaging System. Third, your laboratory's budget is ever important. Does the budget allow for on-site hardware and software systems, with the personnel to maintain them? Is it easier to pay up-front or find a vendor willing to work with you on leasing or rental terms? (We talk about other cost considerations a bit later.)


*Should we purchase software licenses or "rent" the software via a subscription-based model?
Finally, will the lab have someone on-site or on-call to resolve technology issues, including set-up and maintenance of software systems? If your lab will have little in the way of available tech help locally, you'll want to consider the distribution model you want to use for any installed software, i.e., you may want to consider [[software as a service]]. An increasing number of software services are hosted using [[cloud computing]], which when done well is an increasingly reliable option.<ref name="IzrailevskyCloud18">{{cite journal |title=Cloud Reliability |journal=IEEE Cloud Computing |author=Izrailevsky, Y.; Bell, C. |volume=5 |issue=3 |pages=39–44 |year=2018 |doi=10.1109/MCC.2018.032591615}}</ref> Having someone else host the software for you typically means the hosting provider will carry a non-trivial portion of responsibility for technology maintenance and security. Speaking of security, you'll also want to consider the [[cybersecurity]] (addressed later) of not only your software solution but also your overall laboratory operations. Does your laboratory have a cybersecurity plan already in place, or has the decision to make one been postponed? What extra investment is required to ensure your sensitive data is secure? Remember that how you rank your cybersecurity preparedness and implement a cybersecurity plan will also guide your technology investment decisions.<ref name="DouglasComp20">{{cite web |title=[[LII:Comprehensive Guide to Developing and Implementing a Cybersecurity Plan|''Comprehensive Guide to Developing and Implementing a Cybersecurity Plan'']] |author=Douglas, S.E. |work=LIMSwiki |date=July 2020 |accessdate=18 November 2021}}</ref>
*Does the software need to be on-site, or is a [[Software as a service|SaaS]] hosted option more practical?
*Is a modular or complete system better for us?
*What is the best licensing/rental scheme for us? Should we consider site, named user, concurrent user, or workstation licenses?
*Is the company qualified and trustworthy?
*What functionality is available to help our lab not only accomplish workflow tasks but also remain regulatory compliant?


These and other questions are addressed in this chapter.
'''2.1.1.1 Laboratory informatics options'''
 
[[File:Icos Laboratories.JPG|right|350px]]Keeping the above in mind, what are the common software solutions used within a medical diagnostic or research laboratory? One of the more commonly discussed options is the LIS or LIMS. In the past, the term "laboratory information system" or "LIS" was used for solutions designed for medical labs, whereas "laboratory information management system" or "LIMS" was commonly used for non-medical functionality. Over the years, some software vendors have blurred these distinctions, with "LIMS" being used interchangeably with "LIS" in vendor marketing. Today, you'll see both terms being used to reference a laboratory informatics solution designed to assist medical laboratories manage testing workflows, data, and other aspects of their operations.
 
A December 2019 survey by ''Medical Laboratory Observer'', consisting of 273 respondents, is somewhat revealing in what a LIS or LIMS is being used for by a medical laboratory. Ninety-five percent of respondents indicated they use it to streamline their electronic order entry and result management, with medical data connectivity being the second most popular use. Automation tools, customer relationship management, scheduling, inventory management, revenue management, quality management, and reporting were all also mentioned as important to users.<ref name="SilvaITSol19">{{cite web |url=https://www.mlo-online.com/information-technology/article/21117759/it-solutions-in-the-clinical-lab |title=IT solutions in the clinical lab |author=Silva, B. |work=Medical Laboratory Observer |date=19 December 2019 |accessdate=18 November 2021}}</ref> When asked to select from five choices (or provide some other reason) in regard to what their top priority was in selecting a LIS or LIMS, respondents indicated that their most important priority was providing data analysis mechanisms for all types of pathology. See Table 1 below for all responses.
 
{|
| style="vertical-align:top;" |
{| class="wikitable" border="1" cellpadding="5" cellspacing="0" width="100%"
|-
  | colspan="2" style="background-color:white; padding-left:10px; padding-right:10px;" |'''Table 1.''' ''MLO'' survey responses to what the top priority was when acquiring a LIS or LIMS<ref name="SilvaITSol19" />
|-
  ! style="padding-left:10px; padding-right:10px;" |Top acquisition priority for LIS or LIMS based on a survey; ''n'' = 273
  ! style="padding-left:10px; padding-right:10px;" |Percentage of<br />respondents
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" |Analytic solutions for clinical/anatomical/molecular pathology
  | style="background-color:white; padding-left:10px; padding-right:10px;" |36%
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" |Multi-lab networking/connectivity
  | style="background-color:white; padding-left:10px; padding-right:10px;" |25%
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" |Integration with [[electronic medical record]]s (EMRs)
  | style="background-color:white; padding-left:10px; padding-right:10px;" |21%
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" |Flexible management capabilities
  | style="background-color:white; padding-left:10px; padding-right:10px;" |8%
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" |Real-time and/or automated inventory management
  | style="background-color:white; padding-left:10px; padding-right:10px;" |6%
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" |Other (e.g., cost, patient safety needs, and training management)
  | style="background-color:white; padding-left:10px; padding-right:10px;" |4%
|-
|}
|}
 
These responses help paint a picture of what a LIS or LIMS can do, but there's definitely more to it. (See the next subsection on features and functions.) And other systems are also being used in medical laboratories. The previously mentioned ''MLO'' survey indicated that 68 percent of respondents came from a [[hospital]] laboratory, highlighting their importance in the medical diagnostic laboratory demographic. As such, we'd be remiss to not mention the [[hospital information system]] (HIS), a hospital-level information management system that often incorporates modular functionality similar to that of a LIS or LIMS. However, some such labs will often have their own laboratory data management solution independent of the HIS.
 
The survey also made reference the the EMR. This software, along with the [[electronic health record]] (EHR), is most prevalent among health care systems and other ambulatory providers, including physicians. (As of 2019, approximately 89.9 percent of U.S. physicians have adopted EMRs or EHRs.<ref name="ONC_EHRAdopt19">{{cite web |url=https://www.cdc.gov/nchs/fastats/electronic-medical-records.htm |title=Electronic Medical Records/Electronic Health Records (EMRs/EHRs) |publisher=Centers for Disease Control and Prevention |date=14 October 2021 |accessdate=18 November 2021}}</ref>) These systems act as portable, longitudinal collections of patient and population data and a convenient tool for documenting, monitoring, and managing health care delivery. Medical diagnostic laboratory workflow typically sees test data from a LIS get transferred to the respective patient's record in the EHR.<ref name="PerrottaValid16">{{cite journal |title=Validating Laboratory Results in Electronic Health Records: A College of American Pathologists Q-Probes Study |journal=Archives of Pathology and Laboratory Medicine |author=Perrotta, P.L.; Karcher, D.S. |volume=140 |issue=9 |pages=926–31 |year=2016 |doi=10.5858/arpa.2015-0320-CP |pmid=27575266 |pmc=PMC5513146}}</ref>
 
Finally, you may also see [[electronic laboratory notebook]]s (ELN) in medical research labs.<ref name="ManzelRequire13">{{cite journal |title=Requirement analysis for an electronic laboratory notebook for sustainable data management in biomedical research |journal=Studies in Health Technologies and Informatics |author=Menzel, J.; Weil, P.; Bittihn, P. et al. |volume=192 |page=1108 |year=2013 |doi=10.3233/978-1-61499-289-9-1108 |pmid=23920882}}</ref><ref name="GuerreroAnal16">{{cite journal |title=Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute |journal=PLoS One |author=Guerrero, S.; Dujardin, G.; Cabrera-Andrade, A. et al. |volume=11 |issue=8 |at=e0160428 |year=2016 |doi=10.1371/journal.pone.0160428 |pmid=27479083 |pmc=PMC4968837}}</ref> This software acts as an electronic substitute for the traditional [[laboratory notebook]], assisting researchers with direct recording of experiment data, linking records, and protecting proprietary information. They can typically be integrated with other software systems as well.
 
Choosing the right software will largely depend on your laboratory type and what you wish to accomplish. We next review the base features of offerings like an LIS and LIMS, as well as the features required by sub-specialties of medical science.
 
==References==
{{Reflist|colwidth=30em}}

Revision as of 23:39, 21 January 2022

Your laboratory's workflow, instruments, data management requirements, budget, technological expertise, business goals, and risk tolerances will all play a role in deciding what technology to invest in. The physician office lab (POL), with its easy-to-use point-of-care testing and relatively simplified laboratory procedures, will invest significantly less into analyzers, instruments, and laboratory software than the molecular diagnostics laboratory, for example. As such, look at your laboratory's short- and long-term goals, budget, workflow, and regulatory requirements to gain a better understanding of what technology will be involved.

First, what are the laboratory's goals? Does the laboratory owner envision a small investment, taking in a slow but steady flow of simple clinical tests of human fluids, or expansive growth, expanding into multiple testing domains? If the lab is starting small but is confidently expecting to grow, technological investments early on may want to take into account future technologies that may shape data management and security processes. Second, what kind of work will the lab be doing, and what regulatory responsibilities will guide hardware and software investment at the lab? If your lab will be testing medical cannabis for the state or province's associated program, you'll be considering chromatography and spectroscopy instruments, as well as regulatory requirements for complete track-and-trace activities, including reporting. The public health laboratory will likely have many more instruments to cover all its testing needs, and its data management system will likely need to be able to use the Centers for Disease Control and Prevention's PHIN Messaging System. Third, your laboratory's budget is ever important. Does the budget allow for on-site hardware and software systems, with the personnel to maintain them? Is it easier to pay up-front or find a vendor willing to work with you on leasing or rental terms? (We talk about other cost considerations a bit later.)

Finally, will the lab have someone on-site or on-call to resolve technology issues, including set-up and maintenance of software systems? If your lab will have little in the way of available tech help locally, you'll want to consider the distribution model you want to use for any installed software, i.e., you may want to consider software as a service. An increasing number of software services are hosted using cloud computing, which when done well is an increasingly reliable option.[1] Having someone else host the software for you typically means the hosting provider will carry a non-trivial portion of responsibility for technology maintenance and security. Speaking of security, you'll also want to consider the cybersecurity (addressed later) of not only your software solution but also your overall laboratory operations. Does your laboratory have a cybersecurity plan already in place, or has the decision to make one been postponed? What extra investment is required to ensure your sensitive data is secure? Remember that how you rank your cybersecurity preparedness and implement a cybersecurity plan will also guide your technology investment decisions.[2]

2.1.1.1 Laboratory informatics options

Icos Laboratories.JPG

Keeping the above in mind, what are the common software solutions used within a medical diagnostic or research laboratory? One of the more commonly discussed options is the LIS or LIMS. In the past, the term "laboratory information system" or "LIS" was used for solutions designed for medical labs, whereas "laboratory information management system" or "LIMS" was commonly used for non-medical functionality. Over the years, some software vendors have blurred these distinctions, with "LIMS" being used interchangeably with "LIS" in vendor marketing. Today, you'll see both terms being used to reference a laboratory informatics solution designed to assist medical laboratories manage testing workflows, data, and other aspects of their operations.

A December 2019 survey by Medical Laboratory Observer, consisting of 273 respondents, is somewhat revealing in what a LIS or LIMS is being used for by a medical laboratory. Ninety-five percent of respondents indicated they use it to streamline their electronic order entry and result management, with medical data connectivity being the second most popular use. Automation tools, customer relationship management, scheduling, inventory management, revenue management, quality management, and reporting were all also mentioned as important to users.[3] When asked to select from five choices (or provide some other reason) in regard to what their top priority was in selecting a LIS or LIMS, respondents indicated that their most important priority was providing data analysis mechanisms for all types of pathology. See Table 1 below for all responses.

Table 1. MLO survey responses to what the top priority was when acquiring a LIS or LIMS[3]
Top acquisition priority for LIS or LIMS based on a survey; n = 273 Percentage of
respondents
Analytic solutions for clinical/anatomical/molecular pathology 36%
Multi-lab networking/connectivity 25%
Integration with electronic medical records (EMRs) 21%
Flexible management capabilities 8%
Real-time and/or automated inventory management 6%
Other (e.g., cost, patient safety needs, and training management) 4%

These responses help paint a picture of what a LIS or LIMS can do, but there's definitely more to it. (See the next subsection on features and functions.) And other systems are also being used in medical laboratories. The previously mentioned MLO survey indicated that 68 percent of respondents came from a hospital laboratory, highlighting their importance in the medical diagnostic laboratory demographic. As such, we'd be remiss to not mention the hospital information system (HIS), a hospital-level information management system that often incorporates modular functionality similar to that of a LIS or LIMS. However, some such labs will often have their own laboratory data management solution independent of the HIS.

The survey also made reference the the EMR. This software, along with the electronic health record (EHR), is most prevalent among health care systems and other ambulatory providers, including physicians. (As of 2019, approximately 89.9 percent of U.S. physicians have adopted EMRs or EHRs.[4]) These systems act as portable, longitudinal collections of patient and population data and a convenient tool for documenting, monitoring, and managing health care delivery. Medical diagnostic laboratory workflow typically sees test data from a LIS get transferred to the respective patient's record in the EHR.[5]

Finally, you may also see electronic laboratory notebooks (ELN) in medical research labs.[6][7] This software acts as an electronic substitute for the traditional laboratory notebook, assisting researchers with direct recording of experiment data, linking records, and protecting proprietary information. They can typically be integrated with other software systems as well.

Choosing the right software will largely depend on your laboratory type and what you wish to accomplish. We next review the base features of offerings like an LIS and LIMS, as well as the features required by sub-specialties of medical science.

References

  1. Izrailevsky, Y.; Bell, C. (2018). "Cloud Reliability". IEEE Cloud Computing 5 (3): 39–44. doi:10.1109/MCC.2018.032591615. 
  2. Douglas, S.E. (July 2020). "Comprehensive Guide to Developing and Implementing a Cybersecurity Plan". LIMSwiki. 
  3. 3.0 3.1 Silva, B. (19 December 2019). "IT solutions in the clinical lab". Medical Laboratory Observer. https://www.mlo-online.com/information-technology/article/21117759/it-solutions-in-the-clinical-lab. Retrieved 18 November 2021. 
  4. "Electronic Medical Records/Electronic Health Records (EMRs/EHRs)". Centers for Disease Control and Prevention. 14 October 2021. https://www.cdc.gov/nchs/fastats/electronic-medical-records.htm. Retrieved 18 November 2021. 
  5. Perrotta, P.L.; Karcher, D.S. (2016). "Validating Laboratory Results in Electronic Health Records: A College of American Pathologists Q-Probes Study". Archives of Pathology and Laboratory Medicine 140 (9): 926–31. doi:10.5858/arpa.2015-0320-CP. PMC PMC5513146. PMID 27575266. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513146. 
  6. Menzel, J.; Weil, P.; Bittihn, P. et al. (2013). "Requirement analysis for an electronic laboratory notebook for sustainable data management in biomedical research". Studies in Health Technologies and Informatics 192: 1108. doi:10.3233/978-1-61499-289-9-1108. PMID 23920882. 
  7. Guerrero, S.; Dujardin, G.; Cabrera-Andrade, A. et al. (2016). "Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute". PLoS One 11 (8): e0160428. doi:10.1371/journal.pone.0160428. PMC PMC4968837. PMID 27479083. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968837.