Journal:Design and evaluation of a LIS-based autoverification system for coagulation assays in a core clinical laboratory

From LIMSWiki
Revision as of 19:16, 30 September 2019 by Shawndouglas (talk | contribs) (Created stub. Saving and adding more.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
Full article title Design and evaluation of a LIS-based autoverification system for coagulation assays in a core clinical laboratory
Journal BMC Medical Informatics and Decision Making
Author(s) Wang, Zhongqing; Peng, Cheng; Kang, Hui; Fan, Xia; Mu, Runqing; Zhou, Liping, He, Miao; Qu, Bo
Author affiliation(s) China Medical University, Affiliated Hospitals of China Medical University
Primary contact Online contact form
Year published 2019
Volume and issue 19(1)
Page(s) 123
DOI 10.1186/s12911-019-0848-2
ISSN 1472-6947
Distribution license Creative Commons Attribution 4.0 International
Website https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-0848-2
Download https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-019-0848-2 (PDF)

Abstract

Background: An autoverification system for coagulation consists of a series of rules that allows normal data to be released without manual verification. With new advances in medical informatics, the laboratory information system (LIS) has growing potential for the use of autoverification, allowing rapid and accurate verification of clinical laboratory tests. The purpose of the study is to develop and evaluate a LIS-based autoverification system for validation and efficiency.

Methods: Autoverification decision rules—including quality control, analytical error flag, critical value, limited range check, delta check, and logical check rules, as well as patient’s historical information—were integrated into the LIS. Autoverification limit ranges was constructed based on 5 and 95% percentiles. The four most commonly used coagulation assays—prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen (FBG)—were followed by the autoverification protocols. The validation was assessed using characteristics such as autoverification passing rate, the true-positive cases, the true-negative cases, the false-positive cases, the false-negative cases, the sensitivity and the specificity. Efficiency was evaluated by turnaround time (TAT).

Results: A total of 157,079 historical test results of coagulation profiles from January 2016 to December 2016 were collected to determine the distribution intervals. The autoverification passing rate was 77.11% (29,165 / 37,821) based on historical patient data. In the initial test of the autoverification version in June 2017, the overall autoverification passing rate for the whole sample was 78.75% (11,257 / 14,295), with 892 true-positive cases, 11,257 true-negative cases, 2,146 false-positive cases, no false-negative cases, sensitivity of 100% ,and specificity of 83.99%. After formal implementation of the autoverification system for six months, 83,699 samples were assessed. The average overall autoverification passing rate for the whole sample was 78.86%, and the 95% confidence interval (CI) of the passing rate was [78.25, 79.59%]. TAT was reduced from 126 minutes to 101 minutes, which was statistically significant (P < 0.001, Mann-Whitney U test).

Conclusions: The LIS-based autoverification system for coagulation assays can halt the samples with abnormal values for manual verification, guarantee medical safety, minimize the requirements for manual work, shorten TAT, and raise working efficiency.

Keywords: laboratory information systems, medical safety, autoverification, coagulation, turnaround time


References

Notes

This presentation is faithful to the original, with only a few minor changes to presentation and grammar, for clarity. In some cases important information was missing from the references, and that information was added.