Difference between revisions of "Journal:Quality management system implementation in human and animal laboratories"

From LIMSWiki
Jump to navigationJump to search
(Created stub. Saving and adding more.)
 
(Saving and adding more.)
Line 38: Line 38:


==Introduction==
==Introduction==
A core component within global health security initiatives, including the International Health Regulations (IHRs) and Global Health Security Agenda (GHSA), is the need for responsive and technically competent [[Laboratory|laboratories]]. [[1], [2], [3], [4]]. These laboratories play a frontline role in disease detection, surveillance, and response efforts, especially crucial in light of threats from emerging and re-emerging infections of [[pandemic]] potential [5], like the current [[COVID-19]] response. Laboratory results and data generated from these entities are useful if they are reliable and reproducible, eliciting trust and confidence in end users. [6] However, in many low- and middle-income countries (LMICs), laboratory [[Quality (business)|quality]] standards are hampered by a myriad of factors, including lack of [[Regulatory compliance|regulations]], scarce resources and expertise to set up such systems, and the high cost of international accreditation programs. [1]


Laboratory strengthening efforts that incorporate stepwise implementation of [[quality management system]]s (QMS) have been promoted globally since the WHO 2008 Lyon meeting on quality, and the subsequent key global calls to action. [3,7] An adequate nationwide laboratory system that is able to reliably support outbreak and surveillance activities consists of human health laboratories, among other sectors, including animal, food, water, and environmental health (depending on the context), as most of the emerging and re-emerging disease threats are proving to be zoonotic. [[8], [9], [10]] Therefore, a QMS implementation strategy that seeks to not just enable human health laboratories but also leverage a One Health approach—where "multiple sectors communicate and work together to achieve better public health outcomes"<ref name="WHOOneHealth17">{{cite web |url=https://www.who.int/news-room/questions-and-answers/item/one-health |title=One Health |publisher=World Health Organization |date=21 September 2017}}</ref>—is encouraged.
Quality assured diagnostics for both human and veterinary services are key in enhancing efficiencies in the government of Armenia’s (GoA) laboratory testing capacities to detect select agents at a minimal number of safe and secure facilities, as well as in enhancing safe, secure, and sustainable infectious disease surveillance and reporting. [11] In 2017, the GoA and the United States of America Defense Threat Reduction Agency (DTRA) collaborated in the strengthening of human and animal laboratories. They fall under the National Center for Disease Control (NCDCP) for human health and the Food Safety Inspectorate (FSI) for animal health. Through the International Science and Technology Center, Astana Kazakhstan, with Integrated Quality Laboratory Services (IQLS)—providing technical assistance—worked with the GoA and DTRA to address key gaps related to the laboratory QMS. Selected laboratories were composed of central facilities located in the capital city and satellite branches in regional locales (locally Marzes).
IQLS conducted laboratory assessments of both the human and animal laboratory networks. These assessments highlighted that a majority of laboratories were challenged in their QMS. In this article, we present three years of laboratory level QMS implementation (2017–2020). We describe a QMS strengthening approach that uses evidence-based results from laboratory system and on-site laboratory facility assessments to guide implementation, including training and on-site mentorship. We used adapted international tools, allowing for a phased approach as recommended for such settings.
==Methods==
===Laboratory quality strengthening process===
The baseline state of a QMS was determined through an inception period, consisting of system and site assessment of nine laboratories (human [''n'' = 6] and animal health [''n'' = 3]) in the fourth quarter of 2017 and early 2018. Information from these assessments was subsequently used for further site selection. Pursuant the inception period, fifteen (15) key laboratories that would form the backbone of the laboratory system were purposively selected by a joint GoA/DTRA working group and were composed of the following (see Figure 1):
* seven human health laboratories: Central Reference level (Yerevan) and its six Marz level branches
* two infectious disease [[hospital]] laboratories
* six Veterinary laboratories: Central Reference level and five Marz level laboratories




Line 45: Line 59:


==Notes==
==Notes==
This presentation is faithful to the original, with only a few minor changes to presentation, spelling, and grammar. We also added PMCID and DOI when they were missing from the original reference. No other modifications were made in accordance with the "no derivatives" portion of the distribution license.  
This presentation is faithful to the original, with only a few minor changes to presentation, spelling, and grammar. We also added PMCID and DOI when they were missing from the original reference. A citation related to One Health (WHO 2017) was added to the introduction as the concept of what One Health is is never formally introduced. No other modifications were made in accordance with the "no derivatives" portion of the distribution license.  


<!--Place all category tags here-->
<!--Place all category tags here-->

Revision as of 16:04, 24 December 2021

Full article title Quality management system implementation in human and animal laboratories
Journal One Health
Author(s) Kachuwaire, Obert; Zakaryan, Arsen; Manjengwa, Julius; Davtyan, Zaruhi; Châtard, Jerome; Orelle, Arnaud; Tumanyan, Pertch; Petikyan, Aida; Hambardzumyan, Nune; Pierson, Antoine
Author affiliation(s) Integrated Quality Laboratory Services, Republican Veterinary-Sanitary and Phytosanitary Laboratory Services Center, Armenian Centers for Disease Control and Prevention
Primary contact Email: kachuwaire at iqls dot net
Year published 2021
Volume and issue 13
Article # 100278
DOI 10.1016/j.onehlt.2021.100278
ISSN 2352-7714
Distribution license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Website https://www.sciencedirect.com/science/article/pii/S2352771421000689
Download https://www.sciencedirect.com/science/article/pii/S2352771421000689/pdfft (PDF)

Abstract

Background: The ability to rapidly detect emerging and re-emerging threats relies on a strong network of laboratories providing high-quality testing services. Improving laboratory quality management systems (QMS) to ensure that these laboratories effectively play their critical role using a tailored stepwise approach can assist them to comply with World Health Organization's (WHO) International Health Regulations (IHRs), as well as the World Organization for Animal Health's (OIE) guidelines.

Methods: Fifteen (15) laboratories in Armenia's human and veterinary laboratory networks were enrolled into a QMS strengthening program from 2017 to 2020. Training was provided for key staff, resulting in an implementation plan developed to address gaps. Routine mentorship visits were conducted. Audits were undertaken at baseline and post-implementation using standardized checklists to assess laboratory improvements.

Results: Baseline audit general indicator scores ranged from 21% to 46% for human laboratories and 37% to 60% for the veterinary laboratories. Following implementation scores improved, ranging from 7% to 39% for human laboratories and 12% to 19% for veterinary laboratories.

Conclusion: In general, there has been improvement for both human and veterinary laboratories in the areas of QMS implementation, particularly in organizational structure, human resources, equipment management, supply chain management, and data management. Central facilities developed systems that are ready for international accreditation. This One Health strengthening project ensured simultaneous strengthening of both human and veterinary laboratories, which is not a common approach.

Keywords: laboratory quality management, One Health, laboratory assessments, veterinary laboratory, public health laboratory, standardization

Introduction

A core component within global health security initiatives, including the International Health Regulations (IHRs) and Global Health Security Agenda (GHSA), is the need for responsive and technically competent laboratories. [[1], [2], [3], [4]]. These laboratories play a frontline role in disease detection, surveillance, and response efforts, especially crucial in light of threats from emerging and re-emerging infections of pandemic potential [5], like the current COVID-19 response. Laboratory results and data generated from these entities are useful if they are reliable and reproducible, eliciting trust and confidence in end users. [6] However, in many low- and middle-income countries (LMICs), laboratory quality standards are hampered by a myriad of factors, including lack of regulations, scarce resources and expertise to set up such systems, and the high cost of international accreditation programs. [1]

Laboratory strengthening efforts that incorporate stepwise implementation of quality management systems (QMS) have been promoted globally since the WHO 2008 Lyon meeting on quality, and the subsequent key global calls to action. [3,7] An adequate nationwide laboratory system that is able to reliably support outbreak and surveillance activities consists of human health laboratories, among other sectors, including animal, food, water, and environmental health (depending on the context), as most of the emerging and re-emerging disease threats are proving to be zoonotic. [[8], [9], [10]] Therefore, a QMS implementation strategy that seeks to not just enable human health laboratories but also leverage a One Health approach—where "multiple sectors communicate and work together to achieve better public health outcomes"[1]—is encouraged.

Quality assured diagnostics for both human and veterinary services are key in enhancing efficiencies in the government of Armenia’s (GoA) laboratory testing capacities to detect select agents at a minimal number of safe and secure facilities, as well as in enhancing safe, secure, and sustainable infectious disease surveillance and reporting. [11] In 2017, the GoA and the United States of America Defense Threat Reduction Agency (DTRA) collaborated in the strengthening of human and animal laboratories. They fall under the National Center for Disease Control (NCDCP) for human health and the Food Safety Inspectorate (FSI) for animal health. Through the International Science and Technology Center, Astana Kazakhstan, with Integrated Quality Laboratory Services (IQLS)—providing technical assistance—worked with the GoA and DTRA to address key gaps related to the laboratory QMS. Selected laboratories were composed of central facilities located in the capital city and satellite branches in regional locales (locally Marzes).

IQLS conducted laboratory assessments of both the human and animal laboratory networks. These assessments highlighted that a majority of laboratories were challenged in their QMS. In this article, we present three years of laboratory level QMS implementation (2017–2020). We describe a QMS strengthening approach that uses evidence-based results from laboratory system and on-site laboratory facility assessments to guide implementation, including training and on-site mentorship. We used adapted international tools, allowing for a phased approach as recommended for such settings.

Methods

Laboratory quality strengthening process

The baseline state of a QMS was determined through an inception period, consisting of system and site assessment of nine laboratories (human [n = 6] and animal health [n = 3]) in the fourth quarter of 2017 and early 2018. Information from these assessments was subsequently used for further site selection. Pursuant the inception period, fifteen (15) key laboratories that would form the backbone of the laboratory system were purposively selected by a joint GoA/DTRA working group and were composed of the following (see Figure 1):

  • seven human health laboratories: Central Reference level (Yerevan) and its six Marz level branches
  • two infectious disease hospital laboratories
  • six Veterinary laboratories: Central Reference level and five Marz level laboratories


References

Notes

This presentation is faithful to the original, with only a few minor changes to presentation, spelling, and grammar. We also added PMCID and DOI when they were missing from the original reference. A citation related to One Health (WHO 2017) was added to the introduction as the concept of what One Health is is never formally introduced. No other modifications were made in accordance with the "no derivatives" portion of the distribution license.