Difference between revisions of "User:Shawndouglas/sandbox/sublevel1"

From LIMSWiki
Jump to navigationJump to search
 
(103 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:Microfluidic chip for point-of-care medical devices.jpg|right|thumb|400px|Example of a microfluidic chip used in point-of-care medical devices]]On September 28, 2020, the WHO published its blueprint for what they call Target Product Profiles (TPP), which "describe the desirable and minimally acceptable profiles" for four different COVID-19 test categories.<ref name="WHOCOVIDTarget20">{{cite web |url=https://www.who.int/publications/m/item/covid-19-target-product-profiles-for-priority-diagnostics-to-support-response-to-the-covid-19-pandemic-v.0.1 |title=COVID-19 Target product profiles for priority diagnostics to support response to the COVID-19 pandemic v.1.0 |author=World Health Organization |publisher=World Health Organization |date=28 September 2020 |accessdate=08 September 2021}}</ref> Addressing POC testing, the WHO recommends that such assays<ref name="WHOCOVIDTarget20" /><ref name="PeplowRapid20">{{cite web |url=https://cen.acs.org/analytical-chemistry/diagnostics/Rapid-COVID-19-testing-breaks/98/web/2020/08 |title=Rapid COVID-19 testing breaks free from the lab |author=Peplow, M. |work=Chemical & Engineering News |date=10 August 2020 |accessdate=12 August 2020}}</ref>:
{{Saved book
|title=Introduction to Quality and Quality Management Systems
|subtitle=
|cover-image=Time-Quality-Money.png
|cover-color=#fffccc
| setting-papersize = A4
| setting-showtoc = 1
| setting-columns = 1
}}


* have a sensitivity (true positive rate) of at least 80 percent, with 90 percent or better being desirable;
==''Introduction to Quality and Quality Management Systems''==
* have a specificity (true negative rate) of at least 97 percent, with greater than 99 percent being desirable;
{{ombox
* provide results in less than 40 minutes, with less 20 minutes or less being desirable;
| type      = content
* have "a cost that allows broad use, including in low- and middle-income countries";
| style    = width: 500px;
* be simple enough that only a half day to, optimally, a few hours of training are required to run the test; and
| text      = This book should not be considered complete until this message box has been removed. This is a work in progress.
* operate reliably outside a clean laboratory environment.
}}
The goal of this short volume is to act as an introduction to the quality management system. It collects several articles related to quality, quality management, and associated systems.


Though at the time of the announcement few of the available test systems could likely meet all these requirements, it's clear this and other urgencies have put pressure on manufacturers to expand COVID-19 testing to the point of care setting.<ref name="PeplowRapid20" /><ref name="KriegerCorona20">{{cite web |url=https://www.mercurynews.com/2020/08/10/coronavirus-how-to-test-everyone-all-the-time/ |title=Coronavirus: How to test everyone, all the time |author=Krieger, L.M. |work=The Mercury News |date=10 August 2020 |accessdate=12 August 2020}}</ref><ref name="BrownPoint20">{{cite web |url=https://www.mcknights.com/news/point-of-care-testing-could-be-biggest-advance-in-covid-19-fight/ |title=Point-of-care testing could be ‘biggest advance’ in COVID-19 fight |author=Brown, D. |work=McKnight's |date=10 August 2020 |accessdate=12 August 2020}}</ref><ref name="WissonCOVID20">{{cite web |url=https://www.healtheuropa.eu/covid-19-and-effective-cohorting-rapid-point-of-care-triage-testing/101696/ |title=COVID-19 and effective cohorting: Rapid point of care triage testing |author=Wisson, J. |work=Health Europa |date=28 July 2020 |accessdate=12 August 2020}}</ref> Additional incentives were offered by the U.S. National Institutes of Health's Rapid Acceleration of Diagnostics (RADx) funding program, which sought to speed up innovation in COVID-19 testing and promote "truly nontraditional approaches for testing that have a slightly longer horizon."<ref name="TrombergRapid20">{{cite journal |title=Rapid Scaling Up of Covid-19 Diagnostic Testing in the United States — The NIH RADx Initiative |journal=New England Journal of Medicine |author=Tromberg, B.J.; Schwetz, T.A.; Pérez-Stable, E.J. et al. |year=2020 |doi=10.1056/NEJMsr2022263}}</ref> In August 2020, RADx had chosen to fund seven biomedical diagnostic companies making new lab-based and POC tests that could significantly ramp up overall testing in the U.S. into September 2020. Four of those offerings were lab-based (from Ginkgo Bioworks, Helix OpCo, Fluidigm, and Mammoth Biosciences) and three were POC tests (from Mesa Biotech, Quidel, and Talis Biomedical), all using varying technologies and methods such as next-generation sequencing, CRISPR, microfluidic chips, nucleic acid testing, antigen testing, and saliva testing.<ref name="NIHDelivering20">{{cite web |url=https://www.nih.gov/news-events/news-releases/nih-delivering-new-covid-19-testing-technologies-meet-us-demand |title=NIH delivering new COVID-19 testing technologies to meet U.S. demand |author=National Institutes of Health |publisher=National Institutes of Health |work=News Releases |date=31 July 2020 |accessdate=12 August 2020}}</ref> On October 28, 2020, RADx added an additional 15 biomedical diagnostics projects for funding, for a total of 22.<ref name="NIHRADxTech20">{{cite web |url=https://www.nih.gov/research-training/medical-research-initiatives/radx/funding#radx-tech-atp-funded |title=Funded Projects - RADx Tech/ATP |publisher=National Institutes of Health |date=28 October 2020 |accessdate=19 November 2020}}</ref> As of September 2021, some of those 22 programs have come to fruition, garnering FDA EUAs, including Mesa Biotech's rapid cartridge-based RT-PCR Accula System, Quidel's rapid Sofia SARS Antigen FIA test, Mammoth Bioscience's SARS-CoV-2 DETECTR Reagent Kit, and Visby Medical's COVID-19 Point of Care Test.<ref name="FDAInVitroEUAs21" />
;1. What is quality?
:''Key terms''
:[[Quality (business)|Quality]]
:[[Quality assurance]]
:[[Quality control]]
:''The rest''
:[[Data quality]]
:[[Information quality]]
:[[Nonconformity (quality)|Nonconformity]]
:[[Service quality]]
;2. Processes and improvement
:[[Business process]]
:[[Process capability]]
:[[Risk management]]
:[[Workflow]]
;3. Mechanisms for quality
:[[Acceptance testing]]
:[[Conformance testing]]
:[[Clinical quality management system]]
:[[Continual improvement process]]
:[[Corrective and preventive action]]
:[[Good manufacturing practice]]
:[[Malcolm Baldrige National Quality Improvement Act of 1987]]
:[[Quality management]]
:[[Quality management system]]
:[[Total quality management]]
;4. Quality standards
:[[ISO 9000]]
:[[ISO 13485]]
:[[ISO 14000|ISO 14001]]
:[[ISO 15189]]
:[[ISO/IEC 17025]]
:[[ISO/TS 16949]]
;5. Quality in software
:[[Software quality]]
:[[Software quality assurance]]
:[[Software quality management]]


Outside the RADx program, enterprising researchers in other parts of the world are also attempting non-traditional approaches to improving COVID-19 testing options. Examples include<ref name="EsbinOver20" /><ref name="WissonCOVID20" /><ref name="Leichman10Ways20">{{cite web |url=https://www.israel21c.org/how-israeli-scientists-are-improving-corona-testing/ |title=10 ways Israeli scientists are improving corona testing |author=Leichman, A.K. |work=Isael21c |date=27 July 2020 |accessdate=11 August 2020}}</ref><ref name="UNRCOVID20">{{cite web |url=https://www.sciencedaily.com/releases/2020/10/201014141032.htm |title=COVID-19 rapid test has successful lab results, research moves to next stages: Engineers and virologists team up for novel approach |author=University of Nevada, Reno |work=ScienceDaily |date=14 October 2020 |accessdate=19 November 2020}}</ref>:
<!--Place all category tags here-->
 
* a method of DNA nanoswitch detection of virus particles;
* a dual biomarker-based finger-stick test for acute respiratory infections;
* a rapid breath test to detect volatile organic chemicals from the lungs;
* an affordable, hand-held spectral imaging device to detect virus in blood or saliva in seconds;
* an ultrahigh frequency spectroscopic scanning device to see virus particles resonating;
* a method that combines optical devices and magnetic particles to detect virus RNA;
* an RNA extraction protocol that uses magnetic bead-based kits;
* a nanotube-based electrochemical biosensor for detecting biomarkers in a sample in less than a minute;
* the additional use of an [[artificial intelligence]] (AI) application to better scrutinize test results; and
* the miniaturization of PCR technology to make it more portable and user-friendly.
 
Of course, most of these are largely experimental technologies, and realistically getting them into the lab may be far out. But they represent out-of-the-box ideas that have some kind of chance at playing a greater role in the clinical laboratory or in point-of-care settings in the future.
 
==References==
{{Reflist|colwidth=30em}}

Latest revision as of 19:46, 9 February 2022

Introduction to Quality and Quality Management Systems
Time-Quality-Money.png
This user book is a user-generated collection of LIMSWiki articles that can be easily saved, rendered electronically, and ordered as a printed book.
If you are the creator of this book and need help, see Help:Books.

Edit this book: Book Creator · Wikitext
Select format to download:

PDF (A4) · PDF (Letter)

Order a printed copy from these publishers: PediaPress
Start ] [ FAQ ] [ Basic help ] [ Advanced help ] [ Feedback ] [ Recent Changes ]


Introduction to Quality and Quality Management Systems

The goal of this short volume is to act as an introduction to the quality management system. It collects several articles related to quality, quality management, and associated systems.

1. What is quality?
Key terms
Quality
Quality assurance
Quality control
The rest
Data quality
Information quality
Nonconformity
Service quality
2. Processes and improvement
Business process
Process capability
Risk management
Workflow
3. Mechanisms for quality
Acceptance testing
Conformance testing
Clinical quality management system
Continual improvement process
Corrective and preventive action
Good manufacturing practice
Malcolm Baldrige National Quality Improvement Act of 1987
Quality management
Quality management system
Total quality management
4. Quality standards
ISO 9000
ISO 13485
ISO 14001
ISO 15189
ISO/IEC 17025
ISO/TS 16949
5. Quality in software
Software quality
Software quality assurance
Software quality management