Difference between revisions of "User:Shawndouglas/sandbox/sublevel13"

From LIMSWiki
Jump to navigationJump to search
Tag: Reverted
(46 intermediate revisions by the same user not shown)
Line 1: Line 1:
We conclude our examination of 20 broad industry categories and the laboratories associated with them, looking at the final five. For each you'll find a brief description with common services and how the lab type affects the average person. As discussed previously, using our client type + function model we dig into examples found in the private, government, and academic sectors and then outline function through activities, sciences, test types, equipment, and unique attributes. A discussion follows in the section after.
<div class="nonumtoc">__TOC__</div>
{{ombox
| type      = notice
| style    = width: 960px;
| text      = This is sublevel13 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p>
}}


<div align="center">-----Return to [[LII:The Laboratories of Our Lives: Labs, Labs Everywhere!|the beginning]] of this guide-----</div>
==Sandbox begins below==
__TOC__
<div class="nonumtoc">__TOC__</div>
[[File:|right|520px]]
'''Title''': ''Why are the FAIR data principles increasingly important to research laboratories and their software?''


==6. Labs by industry: Part 4==
'''Author for citation''': Shawn E. Douglas
===Nanotechnology===
[[File:Two microgrippers.jpg|left|400px]]
{{clear}}
Nanoscience is the study of objects (materials, structures, devices) and phenomena on the nanometer scale. Physicist Richard Feynman's talk titled "There's Plenty of Room at the Bottom" at the end of 1959 helped spark an exploration today of the world of the fantastically small<ref name="NanoGovWhatIs">{{cite web |url=https://www.nano.gov/nanotech-101/what/definition |title=What is Nanotechnology? |work=Nano.gov |publisher=United States National Nanotechnology Initiative |accessdate=29 June 2022}}</ref>, one that has spawned a great number of discoveries and inventions based on nanoscience.<ref name="NanoGovNanoTime">{{cite web |url=https://www.nano.gov/timeline |title=Nanotechnology Timeline |work=Nano.gov |publisher=United States National Nanotechnology Initiative |accessdate=29 June 2022}}</ref> From quantum computing to cellulose nanomaterials, private, public, and academic [[Laboratory|labs]] of all types are improving the way we construct, work, and play. These labs provide many different services, including (but not limited to)<ref name="GoddardHandbook12">{{cite book |url=https://books.google.com/books?id=dJ-jIv1Hv2EC&printsec=frontcover |title=Handbook of Nanoscience, Engineering, and Technology |editor=Goddard, W.A.; Brenner, D.W.; Lyshevski, S.E.; Iafrate, G.J. |publisher=CRC Press |edition=3rd |pages=1093 |year=2012 |isbn=9781439860151}}</ref> :


* characterization and testing of nanoscale devices and materials
'''License for content''': [https://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International]
* improvement of the performance of existing technologies and materials
* development of new materials
* research and development of nanosafety plans
* research and development of nanotech standards
* research and development of nanomanufacturing and -measurement equipment
* development of nanomedicines
 
''But how do nanotechnology laboratories intersect the average person's life on a daily basis?''
 
As the technology and research around nanotechnology is still in somewhat of an infant phase, it's less clear how these labs affect the average person. The fact that by definition visualizing the design of nanotechnology due to its nano scale is challenging doesn't make relating to nanotech labs any easier either. The idea of the quantum computer, a computational device utilizing nature's small-scale physics, is still in early development, but nanotechnology labs such as MIT's Lincoln Lab continue to research and apply nanoscience to the hardware that could make up the first practical quantum computer.<ref name="HardestyToward16">{{cite web |url=https://news.mit.edu/2016/toward-practical-quantum-computers-0808 |title=Toward practical quantum computers |author=Hardesty, L. |work=MIT News |publisher=Massachusetts Institute of Technology |date=08 August 2016 |accessdate=29 June 2022}}</ref> Moving from the theoretical to the more applicable, the United States National Nanotechnology Initiative list several applications of nanotechnology found in products today, including solar panel films, windmill blades, gas lift valves, and airplane cabin filters.<ref name="NanoGovBenefits">{{cite web |url=https://www.nano.gov/about-nanotechnology/applications-nanotechnology |title=Applications of Nanotechnology |work=Nano.gov |publisher=United States National Nanotechnology Initiative |accessdate=29 June 2022}}</ref>
 
====Client types====
 
'''Private''' - Private nanotech labs are usually associated with a major company or part of a private-public partnership, as the equipment to analyze and manufacture at the nano scale can be costly.
 
Examples include:
 
* [https://www.hpl.hp.com/research/about/quantum_processing.html Hewlett-Packard Laboratories' Quantum Information Processing Group]
* [https://www.nanotechlabs.com/ NanoTechLabs, Inc.]
* [http://english.nanoctr.cas.cn/au/bi/ National Center for Nanoscience and Technology]
 
'''Government''' - Government-based nanotechnology labs are typically themed towards a certain sub-branch, from nanomedicine (cancer research) to military (war machines).
 
Examples include:
 
* [https://nrc.canada.ca/en/research-development/research-collaboration/research-centres/nanotechnology-research-centre/ National Research Council of Canada Nanotechnology Research Centre]
* [https://www.cancer.gov/nano/research/ncl U.S. National Cancer Institute's Nanotechnology Characterization Laboratory]
* [https://www.nrl.navy.mil/nanoscience/about/ U.S. Naval Research Laboratory's Nanoscience Research Laboratory]
 
'''Academic''' - The nanotech labs of higher education tend to have a focus on post-graduate education and research, occasionally subcontracting its expertise out to the private domain.
 
Examples include:
 
* [http://cni.columbia.edu/shared-labs/ Columbia University's Columbia Nano Initiative Shared Labs Facilities]
* [http://snl.mit.edu/ Massachusetts Institute of Technology's Space Nanotechnology Laboratory]
* [https://mntl.illinois.edu/ University of Illinois' Micro & Nanotechnology Lab]
 
====Functions====
 
''What are the most common functions?'' analytical, QA/QC, research/design, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' nanoemulsions, nanomaterials, nanomedicines
 
''What sciences are being applied in these labs?'' astrophysics, biology, biomedical engineering, chemistry, electrical engineering, microfabrication, molecular biology, molecular engineering, organic chemistry, physics, statistics
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Acute toxicity, Biocompatibility, Characterization, Chronic toxicity, Design review and evaluation, Ecotoxicology, Electrophoresis, Efficacy, Friction, Grain and particle size, Irritation, Nanoparticulate, Proficiency, Safety, Spectral, Subchronic toxicity, Surface topography
 
'''Industry-related lab equipment may include''':
 
atom probe, atomic force microscope, atomic force microscopy-Raman system, atomic layer deposition system, calorimeter, cryogenic probe station, dynamic light scattering equipment, electron backscattered diffraction system, ellipsometer, flow chemistry reactor, helium ion beam microscope, micro hardness tester, micropositioning system, nanoparticle characterization system, optical tweezers, particle size analyzer, plasma etching system, safety cabinet, scanning electron microscope, scanning near-field optical microscope, separation membrane, spectrometer, spectrophotometer, transmission electron microscope, viscometer, X-ray camera, X-ray diffractometer
 
''What else, if anything, is unique about the labs in the nanotech industry?''
 
The laboratory equipment of a nanotechnology lab stands out among other industry labs, in so much that it tends to be specialized and expensive, regardless of what sub-field of nanotechnology is being studied.<ref name="BoysenNano08">{{cite web |url=http://www.nanotech-now.com/columns/?article=182 |title=For Rent: One Nano Research Lab… |author=Boysen, E. |work=Nanotechnology Now |publisher=7th Wave, Inc |date=24 March 2008 |accessdate=29 June 2022}}</ref><ref name="DamaseOpen15">{{cite journal |title=Open source and DIY hardware for DNA nanotechnology labs |journal=Journal of Biological Methods |author=Damase, T.R.; Stephens, D.; Spencer, A.; Allen, P.B. |volume=2 |issue=3 |pages=e24 |year=2015 |doi=10.14440/jbm.2015.72 |pmid=26457320 |pmc=PMC4598940}}</ref> This extends to the laboratory space itself, where conditions must be specially maintained for optimal results; this includes electromagnetic shielding, reduced acoustic levels, reduced vibrations, and carefully maintained temperatures.<ref name="USNRLAbout">{{cite web |url=https://www.nrl.navy.mil/nanoscience/about/ |title=About the NSI |work=U.S. Naval Research Laboratory |publisher=Department of the Navy |accessdate=29 June 2022}}</ref>
 
====Informatics in the nanotechnology industry====
Yes, data analysis and management systems are also important in the burgeoning field of nanotechnology. Referred to at times as nanoinformatics, the application of informatics tools to nanotechnology happens in several ways:
 
* Nanomaterials development: the use of artificial neural networks and other tools to formulate, analyze, and assess requirements specification for nanomaterials; develop conceptual designs; and finalize a detailed technical solution<ref name="OmelyanenkoTasks16">{{cite journal |title=Tasks and tools of nanoinformatics in nano materials application in space industry |journal=Proceeding from the International Conference on Nanomaterials: Application & Properties |author=Omelyanenko, V.A. |year=2016 |doi=10.1109/NAP.2016.7757227}}</ref>
 
* Nanosafety data management: the management and sharing of "information on the physicochemical characteristics of nanomaterials, toxicity, exposure, data and metadata"<ref name="ENFNanoinfo17">{{cite web |url=http://euronanoforum2017.eu/2017/05/16/nanoinformatics-a-roadmap-for-european-innovation/ |archiveurl=https://web.archive.org/web/20170811230016/http://euronanoforum2017.eu/2017/05/16/nanoinformatics-a-roadmap-for-european-innovation/ |title=Nanoinformatics: A roadmap for European innovation |work=EuroNanoForum2017 |date=16 May 2017 |archivedate=11 August 2017 |accessdate=29 June 2022}}</ref>
 
* Nanotechnology ontology development: the development of "a web ontology in the form of a semantically precise and computer-processable definition of entities and their relationships" that will further integrate disparate data standards, sources, formats, and models towards a higher-quality and more efficient nanotech development sector<ref name="ErkimbaevNanoinfo16">{{cite journal |title=Nanoinformatics: Problems, methods, and technologies |journal=Scientific and Technical Information Processing |author=Erkimbaev, A.O.; Zitserman, V.Y.; Kobzev, G.A.; Trakhtengerts, M.S. |volume=43 |issue=4 |pages=199–216 |year=2016 |doi=10.3103/S014768821604002X}}</ref><ref name=DukeAGlobal17">{{cite web |url=https://pratt.duke.edu/about/news/global-approach-nanoinformatics |title=A Global Approach to Nanoinformatics |work=Pratt School of Engineering |publisher=Duke University |date=03 March 2017 |accessdate=29 June 2022}}</ref>
 
====LIMSwiki resources====
 
* [[Nano-scaffold]]
* [[:Category:Nanotechnology LIMS|Nanotechnology LIMS]]
* [[Nanotopography]]
 
====Further reading====
 
* {{cite book |url=https://books.google.com/books?id=SGtYBQAAQBAJ&printsec=frontcover |title=A Laboratory Course in Nanoscience and Nanotechnology |author=Poinern, G.E.J. |publisher=CRC Press |year=2014 |pages=260 |isbn=9781482231038}}
 
<div align="center"><hr width="50%"></div>
 
===Petrochemical and hydrocarbon===
[[File:TASNEE 001.jpg|left|400px]]
{{clear}}
A petrochemical and hydrocarbon laboratory is focused on analyzing the properties and constituents of various petrochemicals and their feedstock (including petroleum, natural gas, and coal) for the purposes of ensuring their safety, quality, development, and improvement. Secondarily, these labs may provide a platform for research and development (R&D) and teaching. Petrochemical and hydrocarbon labs are found in the private and academic sectors, and occasionally in government, providing many different services, including (but not limited to)<ref name="ChaudhuriFund16">{{cite book |url=https://books.google.com/books?id=mKQnDet5IUoC&printsec=frontcover |title=Fundamentals of Petroleum and Petrochemical Engineering |author=Chaudhuri, U.R. |publisher=CRC Press |year=2016 |pages=411 |isbn=9781439851616}}</ref>:
 
* analysis for purity
* analysis for contaminates
* corrosion testing
* characterization testing
* environmental testing
* quality control testing
 
''But how do petrochemical and hydrocarbon laboratories intersect the average person's life on a daily basis?''
 
The U.S. Energy Information Administration (EIA) estimated that of the approximately 7.19 billion barrels of petroleum consumed in the U.S. in 2016, 48 percent of it went towards motor gasoline, 20 percent of it went to distillate fuel, and eight percent was used as jet fuel.<ref name="EIAWhatAre17">{{cite web |url=https://www.eia.gov/tools/faqs/faq.php?id=41&t=6 |title=What are petroleum products, and what is petroleum used for? |work=Frequently Asked Questions |publisher=U.S. Energy Information Administration |date=19 April 2022 |accessdate=29 June 2022}}</ref> The EIA also notes that while petroleum is used as a feedstock for the creation of plastic in the U.S., it's not the main feedstock for plastic, and regardless, the EIA is unable to determine what percentage of petroleum consumed in the U.S. went towards the creation of plastics<ref name="EIAHowMuch17">{{cite web |url=https://www.eia.gov/tools/faqs/faq.php?id=34&t=6 |title=How much oil is used to make plastic? |work=Frequently Asked Questions |publisher=U.S. Energy Information Administration |date=01 June 2021 |accessdate=29 June 2022}}</ref> (though simple math using the numbers previously provided proves that it must be 24 percent or less). Even so, these facts alone can't but cement the idea that the world as we know it today would not be as it is without petroleum and petrochemical laboratories and their laboratorians. One could argue that laboratories developing renewable source of energy and the equipment to harness it are more important from an environmental standpoint, but the point still stands: we currently depend heavily on petrochemicals as energy and to create thousands of products.<ref name="SpeightTheChem14">{{cite book |url=https://books.google.com/books?id=ZDPOBQAAQBAJ&pg=PA773 |title=The Chemistry and Technology of Petroleum |chapter=Chapter 27: Petrochemicals |author=Speight, J.G. |publisher=CRC Press |year=2014 |pages=773–795 |isbn=9781439873908}}</ref>
 
====Client types====
 
'''Private''' - These labs provide an array of analytical services as third-party testers and consultants, or they work as company-based or independent research and development laboratories developing new petrochemical-based products.
 
Examples include:
 
* [https://www.huffmanlabs.com/?page_id=160 Huffman Hazen Laboratories]
* [https://www.sgs.com/en/services/petrochemical-testing SGS]
* [https://www.sumitomo-chem.co.jp/english/rd/laboratories/essentialchemicals/ Sumitomo Chemical]
 
 
'''Government''' - At least in the United States, government petrochemical labs are typically working to ensure consistent fuel quality, product safety, and fuel transportation methods. Secondarily they may act as environmental response centers, reacting to petroleum spills and natural spills or developing improved remediation methods.
 
Examples include:
 
* [https://wildlife.ca.gov/OSPR/Science/Petroleum-Chemistry-Lab California Petroleum Chemistry Lab]
* [https://ops.colorado.gov/Petroleum/PetroleumLaboratory Colorado Petroleum Laboratory]
* [https://agr.georgia.gov/state-fuel-oil-lab.aspx Georgia State Fuel Oil Laboratory]
 
 
'''Academic''' - Academic petrochemical labs are providing education to undergraduate and graduate students, as well as driving new research into petrochemical extraction and infrastructure.
 
Examples include:
 
* [https://www.delmar.edu/degrees/environmental-petrochemical-lab-technology/index.html Del Mar College's Environmental/Petrochemical Lab Technology Program]
* [https://engineering.tamu.edu/petroleum/research/index.html Texas A&M University's Harold Vance Department of Petroleum Engineering]
* [https://torp.ku.edu/ University of Kansas' Tertiary Oil Recovery Program]
 
====Functions====
 
''What are the most common functions?'' analytical, QA/QC, research/design, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' aromatics, coal, feedstocks, hydrocarbons, intermediate chemicals, monomers, natural gas, petroleum, polymers, sediment, solvents, sulfur, trace metals, water, wear metals
 
''What sciences are being applied in these labs?'' chemistry, environmental science, geology, geophysics, mathematics, petroleum engineering, physics, thermodynamics
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Acid and base number, Aniline point, API gravity, Basic sediment and water, Biodegradation, Boiling - freezing - melting point, Calorimetry, Carbon-hydrogen ratio, Cargo inspection and sampling, Cetane, Chemical and materials compatibility, Cloud point, Combustion, Compliance/Conformance, Conductivity, Congealing point, Conradson Carbon Residue, Contamination, Corrosion, Damage tolerance, Decomposition, Density, Dissolved gas, Doctor test, Emissions, Evaporation loss, Flash point, Fluid dynamics, Geochemistry, Geophysics, Heating value, Hydraulic, Hydrocarbon group type, Immersion, Impurity, Kauri-butanol value, Leak, Lightning, Lubricity, Macroetch, Mobility, Moisture, Molecular weight, Octane, Oxidation reduction potential, Oxidation stability, Passivation, Permeability, Peroxide value, pH, Plating and coating evaluations, Pour point, Pressure, Process safety, Proficiency, Quality control, Radioactivity, Radiochemical, Ramsbottom Carbon Residue, Refractive index, Salt content, Saponification value, Seismic, Smoke point, Stress corrosion cracking, Surface tension, Thermal, Vapor pressure, Velocity and flow, Viscosity, Weathering
 
'''Industry-related lab equipment may include''':
 
amperostat, balance, chromatographic, combustion analyzer, constant temperature bath, density meter, dissolved oxygen meter, evaporation loss analyzer, flashpoint tester, flocculator, fume hood, hot plate, hygrometer, iodine flask, metallic iron analyzer, muffle furnace, oil-in-water analyzer, oxidation stability analyzer, pH meter, pycnometer, refractometer, rheometer, shakers and stirrers, specific gravity flask, spectrometer, spectrophotometer, thermometer, thin film oven, titrator, turbidity meter, vapor pressure analyzer, viscometer, water bath
 
''What else, if anything, is unique about the labs in the petrochemical and hydrocarbon industry?''
 
Because of the environmental consequences of petrochemical and feedstock pollution of the environment, petrochemical labs share some of the same characteristics of environmental labs. Also like environmental labs, petrochemical labs have their fair share of field analyses, both on land and on the water.
 
====Informatics in the petrochemical and hydrocarbon industry====
Proper data analysis and management in the petrochemical and hydrocarbon lab is vital to the quality of the final consumer product and to the efficiency of the business itself. [[Laboratory informatics]] software like the [[laboratory information management system]] (LIMS) is an important tool towards meeting those goals. And the processes are different at each manufacturing and R&D stage, from improving operation efficiencies in drilling and recovery of the upstream phase, the process optimization of midstream hydrocarbon cracking and refining, and the process development and improvement of polymers and plastics downstream.<ref name="KtoriFuelling14">{{cite web |url=https://www.scientific-computing.com/feature/fuelling-growth-petrochemicals-sector |title=Fuelling growth in the petrochemicals sector |author=Ktori, S. |work=Scientific Computing World |publisher=Europa Science |date=07 November 2014 |accessdate=29 June 2022}}</ref> LIMS and other tools are capable of automatically capturing data from a continuous process flow that involves in-process testing using numerous instruments, processing and storing that data, and making it available for a variety of purposes, including [[Quality control|quality]] testing.<ref name="WilkieLab13">{{cite web |url=https://www.scientific-computing.com/feature/laboratory-informatics-systems-are-fuelling-efficiency |title=Laboratory informatics systems are fuelling efficiency |author=Wilkie, T. |work=Scientific Computing World |publisher=Europa Science |date=01 April 2013 |accessdate=29 June 2022}}</ref> As the need for efficiency and improved quality grows, conferences such as the International Petroleum Data Integration, Information and Data Management Conference<ref name="PNECIntPetro">{{cite web |url=https://www.pnecconferences.com/ |title=Petroleum Network Education Conferences |publisher=PennWell Corporation |accessdate=29 June 2022}}</ref> and the Esri Energy Resources GIS Conference<ref name="ESRIPetro">{{cite web |url=https://www.esri.com/en-us/about/events/esri-energy-resources-gis-conference/ |title=Esri Energy Resources GIS Conference |publisher=Environmental Systems Research Institute, Inc |accessdate=29 June 2022}}</ref> provide further opportunities for the industry to share and innovate new ways for informatics systems to further benefit the industry.
 
====LIMSwiki resources====
 
* [[Geoinformatics]]
* [[:Category:Petrochemical LIMS|Petrochemical LIMS]]
 
====Further reading====
 
* {{cite book |url=https://books.google.com/books?id=mKQnDet5IUoC&printsec=frontcover |title=Fundamentals of Petroleum and Petrochemical Engineering |author=Chaundhuri, U.R. |publisher=CRC Press |year=2016 |pages=411 |isbn=9781439851616}}
 
<div align="center"><hr width="50%"></div>


===Pharmaceutical===
'''Publication date''': May 2024
[[File:Generic Propecia.jpg|left|400px]]
{{clear}}


The pharmaceutical laboratory is complex, but at its core the laboratorians in them aim to better develop, analyze, improve, and quality control the drugs and medical devices that improve humans' and animals' quality of life. Due to the potential health risks of ingesting/implanting a poorly tested pharmaceutical/[[medical device]], these labs tend to be heavily regulated by governments. In fact, the governments themselves will often have their own labs to test for product quality and lab compliance. Universities provide not only education programs and graduate research opportunities but also pharmaceutical analysis and outreach programs. Pharmaceutical labs are found in the private, government, and academic sectors, providing many different services, including (but not limited to)<ref name="WuAssay10">{{cite book |url=https://books.google.com/books?id=qxKqC1aGLBIC&pg=PA347 |title=Assay Development: Fundamentals and Practices |chapter=13.6 HTS Operation Management |author=Wu, G. |publisher=John Wiley & Sons |year=2010 |pages=347–354 |isbn=9780470583111}}</ref><ref name="AvomeenPharmLab">{{cite web |url=https://www.element.com/life-sciences/pharmaceutical |title=Element in Pharmaceutical Testing |publisher=Element Materials Technology |accessdate=29 June 2022}}</ref><ref name="HansenIntro12">{{cite book |url=https://books.google.com/books?id=S7S6a4OYTasC&printsec=frontcover |title=Introduction to Pharmaceutical Chemical Analysis |author=Hansen, S.; Pedersen-Bjergaard, S.; Rasmussen, K. |publisher=John Wiley & Sons |year=2012 |pages=624 |isbn=9781119954330}}</ref>:
==Introduction==


* hit picking/screening of potential therapeutics
==The growing importance of the FAIR principles to research laboratories==
* method development and validation
The [[Journal:The FAIR Guiding Principles for scientific data management and stewardship|FAIR data principles]] were published by Wilkinson ''et al.'' in 2016 as a stakeholder collaboration driven to see research "objects" (i.e., research data and [[information]] of all shapes and formats) become more universally findable, accessible, interoperable, and reusable (FAIR) by both machines and people.<ref name="WilkinsonTheFAIR16">{{Cite journal |last=Wilkinson |first=Mark D. |last2=Dumontier |first2=Michel |last3=Aalbersberg |first3=IJsbrand Jan |last4=Appleton |first4=Gabrielle |last5=Axton |first5=Myles |last6=Baak |first6=Arie |last7=Blomberg |first7=Niklas |last8=Boiten |first8=Jan-Willem |last9=da Silva Santos |first9=Luiz Bonino |last10=Bourne |first10=Philip E. |last11=Bouwman |first11=Jildau |date=2016-03-15 |title=The FAIR Guiding Principles for scientific data management and stewardship |url=https://www.nature.com/articles/sdata201618 |journal=Scientific Data |language=en |volume=3 |issue=1 |pages=160018 |doi=10.1038/sdata.2016.18 |issn=2052-4463 |pmc=PMC4792175 |pmid=26978244}}</ref> The authors released the FAIR principles while recognizing that "one of the grand challenges of data-intensive science ... is to improve knowledge discovery through assisting both humans and their computational agents in the discovery of, access to, and integration and analysis of task-appropriate scientific data and other scholarly digital objects."<ref name="WilkinsonTheFAIR16" /> Since being published, other researchers have taken the somewhat broad set of principles and refined them to their own scientific disciplines, as well as to other types of research objects, including the research software being used by those researchers to generate research objects.<ref name="NIHPubMedSearch">{{cite web |url=https://pubmed.ncbi.nlm.nih.gov/?term=fair+data+principles |title=fair data principles |work=PubMed Search |publisher=National Institutes of Health, National Library of Medicine |accessdate=30 April 2024}}</ref><ref name="HasselbringFromFAIR20">{{Cite journal |last=Hasselbring |first=Wilhelm |last2=Carr |first2=Leslie |last3=Hettrick |first3=Simon |last4=Packer |first4=Heather |last5=Tiropanis |first5=Thanassis |date=2020-02-25 |title=From FAIR research data toward FAIR and open research software |url=https://www.degruyter.com/document/doi/10.1515/itit-2019-0040/html |journal=it - Information Technology |language=en |volume=62 |issue=1 |pages=39–47 |doi=10.1515/itit-2019-0040 |issn=2196-7032}}</ref><ref name="GruenpeterFAIRPlus20">{{Cite web |last=Gruenpeter, M. |date=23 November 2020 |title=FAIR + Software: Decoding the principles |url=https://www.fairsfair.eu/sites/default/files/FAIR%20%2B%20software.pdf |format=PDF |publisher=FAIRsFAIR “Fostering FAIR Data Practices In Europe” |accessdate=30 April 2024}}</ref><ref name=":0">{{Cite journal |last=Barker |first=Michelle |last2=Chue Hong |first2=Neil P. |last3=Katz |first3=Daniel S. |last4=Lamprecht |first4=Anna-Lena |last5=Martinez-Ortiz |first5=Carlos |last6=Psomopoulos |first6=Fotis |last7=Harrow |first7=Jennifer |last8=Castro |first8=Leyla Jael |last9=Gruenpeter |first9=Morane |last10=Martinez |first10=Paula Andrea |last11=Honeyman |first11=Tom |date=2022-10-14 |title=Introducing the FAIR Principles for research software |url=https://www.nature.com/articles/s41597-022-01710-x |journal=Scientific Data |language=en |volume=9 |issue=1 |pages=622 |doi=10.1038/s41597-022-01710-x |issn=2052-4463 |pmc=PMC9562067 |pmid=36241754}}</ref><ref name=":1">{{Cite journal |last=Patel |first=Bhavesh |last2=Soundarajan |first2=Sanjay |last3=Ménager |first3=Hervé |last4=Hu |first4=Zicheng |date=2023-08-23 |title=Making Biomedical Research Software FAIR: Actionable Step-by-step Guidelines with a User-support Tool |url=https://www.nature.com/articles/s41597-023-02463-x |journal=Scientific Data |language=en |volume=10 |issue=1 |pages=557 |doi=10.1038/s41597-023-02463-x |issn=2052-4463 |pmc=PMC10447492 |pmid=37612312}}</ref><ref name=":2">{{Cite journal |last=Du |first=Xinsong |last2=Dastmalchi |first2=Farhad |last3=Ye |first3=Hao |last4=Garrett |first4=Timothy J. |last5=Diller |first5=Matthew A. |last6=Liu |first6=Mei |last7=Hogan |first7=William R. |last8=Brochhausen |first8=Mathias |last9=Lemas |first9=Dominick J. |date=2023-02-06 |title=Evaluating LC-HRMS metabolomics data processing software using FAIR principles for research software |url=https://link.springer.com/10.1007/s11306-023-01974-3 |journal=Metabolomics |language=en |volume=19 |issue=2 |pages=11 |doi=10.1007/s11306-023-01974-3 |issn=1573-3890}}</ref>
* stability and photostability testing
* shelf life testing
* bioequivalence testing
* dissolution testing
* impurities testing
* counterfeit testing
* formulation optimization
* quality control


''But how do pharmaceutical laboratories intersect the average person's life on a daily basis?''  
But why are research laboratories increasingly pushing for more findable, accessible, interoperable, and reusable research objects and software? The short answer, as evidenced by the Wilkinson ''et al.'' quote above is that greater innovation can be gained through improved knowledge discovery. The discovery process necessary for that greater innovation—whether through traditional research methods or [[artificial intelligence]] (AI)-driven methods—is enhanced when research objects and software are compatible with the core ideas of FAIR.<ref name="WilkinsonTheFAIR16" /><ref name="OlsenEmbracing23">{{cite web |url=https://www.pharmasalmanac.com/articles/embracing-fair-data-on-the-path-to-ai-readiness |title=Embracing FAIR Data on the Path to AI-Readiness |author=Olsen, C. |work=Pharma's Almanac |date=01 September 2023 |accessdate=03 May 2024}}</ref><ref name="HuertaFAIRForAI23">{{Cite journal |last=Huerta |first=E. A. |last2=Blaiszik |first2=Ben |last3=Brinson |first3=L. Catherine |last4=Bouchard |first4=Kristofer E. |last5=Diaz |first5=Daniel |last6=Doglioni |first6=Caterina |last7=Duarte |first7=Javier M. |last8=Emani |first8=Murali |last9=Foster |first9=Ian |last10=Fox |first10=Geoffrey |last11=Harris |first11=Philip |date=2023-07-26 |title=FAIR for AI: An interdisciplinary and international community building perspective |url=https://www.nature.com/articles/s41597-023-02298-6 |journal=Scientific Data |language=en |volume=10 |issue=1 |pages=487 |doi=10.1038/s41597-023-02298-6 |issn=2052-4463 |pmc=PMC10372139 |pmid=37495591}}</ref>


In a 2000 journal article published in ''Journal of Automated Methods & Management in Chemistry'', author Juanita M. Hawkins of Jansen Pharmaceutica noted the following: "Understanding the contributions that the laboratory can make in product/process development, process improvement, market surveillance and general business is key to the pharmaceutical business today. Poor laboratory practice yields compliance issues, increased cost, increased cycle time and delayed product introductions."<ref name="HawkinsTheImport00">{{cite journal |title=The Importance of the Laboratory to the Pharmaceutical Business |journal=Journal of Automated Methods & management in Chemistry |author=Hawkins, J.M. |volume=22 |issue=2 |pages=47–52 |year=2000 |doi=10.1155/S1463924600000067 |pmid=18924858 |pmc=PMC2548258}}</ref> While a very business-centered statement, reading between the lines—and further into the journal article—reveals why properly run pharmaceutical labs are important to the average person: "customers expect the product to be safe and efficacious" and "that it meets all specifications."<ref name="HawkinsTheImport00" /> All but those participating in a primitive society will at one point (if not frequently) have the need to be treated with a pharmaceutical drug or device. Without the associated laboratories and quality control (QC) procedures in place, the pharmaceuticals would be of poor quality (if they existed at all) and endanger many lives. Even if you take something as simple as an aspirin, remember that a lab developed it, improved it, and/or QCed it for your benefit.  
A slightly longer answer, suitable for a Q&A topic, requires looking at a few more details of the FAIR principles as applied to both research objects and research software. Research laboratories, whether located in an organization or contracted out as third parties, exist to innovate. That innovation can come in the form of discovering new materials that may or may not have a future application, developing a pharmaceutical to improve patient outcomes for a particular disease, or modifying (for some sort of improvement) an existing food or beverage recipe, among others. In academic research labs, this usually looks like knowledge advancement and the publishing of research results, whereas in industry research labs, this typically looks like more practical applications of research concepts to new or existing products or services. In both cases, research software was likely involved at some point, whether it be something like a researcher-developed [[bioinformatics]] application or a commercial vendor-developed [[electronic laboratory notebook]] (ELN).  


====Client types====
===FAIR research objects===
Regarding research objects themselves, the FAIR principles essentially say "vast amounts of data and information in largely heterogeneous formats spread across disparate sources both electronic and paper make modern research workflows difficult, tedious, and at times impossible. Further, repeatability, reproducibility, and replicability of openly published or secure internal research results is at risk, giving less confidence to academic peers in the published research, or less confidence to critical stakeholders in the viability of a researched prototype." As such, research objects (which include not only their inherent data and information but also any [[metadata]] that describe features of that data and information) need to be<ref name="Rocca-SerraFAIRCook22">{{Cite book |last=Rocca-Serra, Philippe |last2=Sansone, Susanna-Assunta |last3=Gu, Wei |last4=Welter, Danielle |last5=Abbassi Daloii, Tooba |last6=Portell-Silva, Laura |date=2022-06-30 |title=D2.1 FAIR Cookbook |url=https://zenodo.org/record/6783564 |chapter=Introducing the FAIR Principles |doi=10.5281/ZENODO.6783564}}</ref>:


'''Private''' - These labs are either part of a pharmaceutical company's portfolio or are third-party contract labs that provide extensive analysis and consulting services.
*''findable'', with globally unique and persistent identifiers, rich metadata that link to the identifier of the data described, and an ability to be indexed as an effectively searchable resource;
*''accessible'', being able to be retrieved (including metadata of data that is no longer available) by identifiers using secure standardized communication protocols that are open, free, and universally implementable with authentication and authorization mechanisms;
*''interoperable'', represented using formal, accessible, shared, and relevant language models and vocabularies that abide by FAIR principles, as well as with qualified linkage to other metadata; and
*''reusable'', being richly described by accurate and relevant metadata, released with a clear and accessible data usage license, associated with sufficiently detailed provenance information, and compliant with discipline-specific community standards.


Examples include:
All that talk of unique persistent identifiers, communication protocols, authentication mechanisms, language models (e.g., [[ontology]] languages), standardized vocabularies, provenance information, and more could make one's head spin. And, to be fair, it has been challenging for research groups to adopt FAIR, with few widespread international efforts to translate the FAIR principles to broad research. The FAIR Cookbook represents one example of such international collaborative effort, providing "a combination of guidance, technical, hands-on, background and review types to cover the operation steps of FAIR data management."<ref name="Rocca-SerraFAIRCook22-1">{{Cite book |last=Rocca-Serra, Philippe |last2=Sansone, Susanna-Assunta |last3=Gu, Wei |last4=Welter, Danielle |last5=Abbassi Daloii, Tooba |last6=Portell-Silva, Laura |date=2022-06-30 |title=D2.1 FAIR Cookbook |url=https://zenodo.org/record/6783564 |chapter=Introduction |doi=10.5281/ZENODO.6783564}}</ref> In fact, the Cookbook is illustrative of the challenges of implementing FAIR in research laboratories, particularly given the diverse array of vocabularies used across the wealth of scientific disciplines, such as [[biobanking]], [[biomedical engineering]], [[botany]], [[food science]], and [[materials science]]. The way a botanical research organization makes its research objects FAIR is going to require a set of different tools than the materials science research organization. But all of them will turn to [[Informatics (academic field)|informatics]] tools, data management plans, database tools, and more to not only massage existing research objects to be FAIR but also better ensure newly created research objects are FAIR as well.


* [https://www.element.com/life-sciences/pharmaceutical Element Materials Technology]
===FAIR research software===
* [http://www.medipharmlab.com/services/pharmaceutical-analysis.php Medipharm Laboratories]
Discussion on research software and its FAIRness is more complicated. It is beyond the scope of this article to go into greater detail about the concepts surrounding FAIR research software, but a brief overview will be attempted. When the FAIR principles were first published, the framework was largely being applied to research objects. However, researchers quickly recognized that any planning around updating processes and systems to make research objects more FAIR would have to be tailored to specific research contexts. This led to recognizing that digital research objects go beyond data and information, and that there is a "specific nature of software" used in research; that research software should not be considered "just data."<ref name="GruenpeterFAIRPlus20" /> The end result has been seen researchers begin to apply the core concepts of FAIR to research software, but slightly differently from research objects.<ref name="NIHPubMedSearch" /><ref name="HasselbringFromFAIR20" /><ref name="GruenpeterFAIRPlus20" /><ref name=":0" /><ref name=":1" /><ref name=":2" />
* [https://www.pacelabs.com/life-sciences/ Pace Analytical Services]


'''Government''' - Government pharmaceutical labs typically act as either research centers or in an official regulatory capacity to ensure product quality and lab compliance.
Unsurprisingly, what researchers consider to be "research software" for purposes of FAIR has historically been interpreted numerous ways. Does the commercial spreadsheet software used to make calculations to research data deserve to be called research software in parallel with the lab-developed bioinformatics application used to generate that data? Given the difficulties of gaining a consensus definition of the term, a 2021 international initiative called FAIRsFAIR made a good-faith effort to define "research software" with the feedback of multiple stakeholders. The short version of their resulting definition is that, "[r]esearch software includes source code files, algorithms, scripts, computational workflows, and executables that were created during the research process, or for a research purpose."<ref name="GruenpeterDefining21">{{Cite journal |last=Gruenpeter, Morane |last2=Katz, Daniel S. |last3=Lamprecht, Anna-Lena |last4=Honeyman, Tom |last5=Garijo, Daniel |last6=Struck, Alexander |last7=Niehues, Anna |last8=Martinez, Paula Andrea |last9=Castro, Leyla Jael |last10=Rabemanantsoa, Tovo |last11=Chue Hong, Neil P. |date=2021-09-13 |title=Defining Research Software: a controversial discussion |url=https://zenodo.org/record/5504016 |journal=Zenodo |doi=10.5281/zenodo.5504016}}</ref> Of note is the last part, acknowledging that research software can be developed in the lab during the research process or developed beforehand by, for example, a commercial software developer with a strong purpose of being used for research. As such, Microsoft Excel may not be looked upon as research software, but an ELN or [[laboratory information management system]] (LIMS) thoughtfully developed with research activities in mind could be considered research software. More often than not, that software is going to be developed in-house. A growing push for the FAIRification of that software, as well as commercial research solutions, has seen the emergence of "research software engineering" as a domain of practice.<ref name="MoynihanTheHitch20">{{cite web |url=https://invenia.github.io/blog/2020/07/07/software-engineering/ |title=The Hitchhiker’s Guide to Research Software Engineering: From PhD to RSE |author=Moynihan, G. |work=Invenia Blog |publisher=Invenia Technical Computing Corporation |date=07 July 2020}}</ref><ref name="WoolstonWhySci22">{{Cite journal |last=Woolston |first=Chris |date=2022-05-31 |title=Why science needs more research software engineers |url=https://www.nature.com/articles/d41586-022-01516-2 |journal=Nature |language=en |pages=d41586–022–01516-2 |doi=10.1038/d41586-022-01516-2 |issn=0028-0836}}</ref> While in the past, broadly speaking, researchers often cobbled together research software with less a focus on quality and reproducibility and more on getting their research published, today's push for FAIR data and software by academic journals, institutions, and other researchers seeking to collaborate has placed a much greater focus on the concept of "better software, better research"<ref name="WoolstonWhySci22" /><ref name="CohenTheFour21">{{Cite journal |last=Cohen |first=Jeremy |last2=Katz |first2=Daniel S. |last3=Barker |first3=Michelle |last4=Chue Hong |first4=Neil |last5=Haines |first5=Robert |last6=Jay |first6=Caroline |date=2021-01 |title=The Four Pillars of Research Software Engineering |url=https://ieeexplore.ieee.org/document/8994167/ |journal=IEEE Software |volume=38 |issue=1 |pages=97–105 |doi=10.1109/MS.2020.2973362 |issn=0740-7459}}</ref>, with research software engineering efforts focusing on that concept as being vital to future research outcomes. Cohen ''et al.'' add that "ultimately, good research software can make the difference between valid, sustainable, reproducible research outputs and short-lived, potentially unreliable or erroneous outputs."<ref name="CohenTheFour21" />


Examples include:


* [https://frederick.cancer.gov/research/biopharmaceutical-development-program Frederick National Laboratory for Cancer Research's Biopharmaceutical Development Program]
* [https://www.govtlab.gov.hk/en/about_us/aasd/pcs.html Hong Kong's Pharmaceutical Chemistry Section of the Analytical & Advisory Services Division]
* [https://www.fda.gov/science-research/field-science-and-laboratories/detroit-laboratory-detl U.S. Food and Drug Administration's Detroit Laboratory]


'''Academic''' - The pharmaceutical engineering labs in the academic sector provide not only education programs for students and graduate research opportunities but also pharmaceutical analysis and outreach programs.
===FAIRer research objects, better software, greater innovation===
 
Examples include:
 
* [https://pharmlabs.unc.edu/ University of North Carolina - Chapel Hill's Pharmaceutics and Pharmaceutical Compounding Laboratory]
* [https://padproject.nd.edu/get-involved/distributed-pharmaceutical-analysis-lab/ University of Notre Dame's Distributed Pharmaceutical Analysis Lab]
* [https://web.uri.edu/pharmacy/research/#cl-tabs-1-tab-section-5 University of Rhode Island, College of Pharmacy's various labs]
 
====Functions====
 
''What are the most common functions?'' analytical, QA/QC, research/design, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' biological agents and samples, contaminates, drug substances, elemental metals, microbials, proteins, raw materials, solvents
 
''What sciences are being applied in these labs?'' biochemistry, biology, chemistry, genetics, molecular biology, neuroscience, pathology, pharmacology, physiology, posology, toxicology
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Absorption, Active ingredient, Acute contact, Acute oral, Acute toxicity, Alcohol level, Allergy, Altitude, Amino acid analysis, Angle of repose, Antimicrobial, Bioavailability, Bioburden, Biocompatibility, Bioequivalence, Biosafety, Boiling - freezing - melting point, C- and N-terminal, Carcinogenicity, Characterization, Chronic toxicity, Circular dichroism, Cleanliness, Clinical diagnostic, Colorimetric, Compendial, Compliance/Conformance, Composition, Congealing point, Contamination, Cytotoxicity, De novo protein, Detection, Developmental and reproductive toxicology, Disintegration, Dissolution, Disulfide bridge, Efficacy, Electrophoresis, Endotoxin, Expiration dating, Extractables and leachables, Flavor, Formulation, Fragrance, Friability, Functional observational battery, Genotoxicity, Human factors, Identification, Impurity, Ingredient, Ingress, Inhalation, Irritation, Iterative, Locomotor activity, Lot release, Microfluidics, Minimum bactericidal concentration, Minimum inhibitory concentration, Moisture, Molecular weight, Mutagenicity, Nanoparticulate, Organic carbon, Osmolality, Osmolarity, Oxidation reduction potential, Oxidation stability, Pathogen, Peptide mapping, Permeability, pH, Pharmacokinetic, Photostability, Phototoxicity, Polarimetry, Post-translational modification, Preservative challenge, Process safety, Proficiency, Protein analysis, Protein characterization, Purity, Pyrogenicity, Quality control, Radioactivity, Radiochemical, Safety, Saponification value, Sensitization, Solubility, Specific rotation, Stability, Sterility, Subchronic toxicity, Surface tension, Thermal, Total viable count, Toxicokinetic, Ultraviolet, Usability, Validation, Verification, Virucidal efficacy, Water activity
 
'''Industry-related lab equipment may include''':
 
animal monitoring equipment, balance, biological safety cabinet, blood and hematology analyzers, calorimeter, cell counter, cell disruptor, cell harvesting system, centrifuge, chemical synthesizer, chromatographic, cryocooler, dissolution equipment, dissolved oxygen meter, DNA shearing sonicator, drying and heating chamber, electrophoresis equipment, flow cytometer, flow injection analyzer, freeze dryer, freezer, fume hood, glove box, hit-picking system, incubator, inhalation chamber, interferometer, laminar flow cabinet, liquid handling equipment, metallic iron analyzer, microplate equipment, particle counter, PCR equipment, pH meter, powder analyzer, pumps and sprayers, refractometer, rheometer, solid phase extraction equipment, spectrometer, spectrophotometer, steam sterilizer, sonicator, turbidity meter, UV chamber, vacuum evaporator, viscometer, water purification system
 
''What else, if anything, is unique about the labs in the pharmaceutical industry?''
 
QC is important to any laboratory; however, in the pharmaceutical industry, many countries like the U.S. place extra emphasis on pharmaceutical QC labs. "The pharmaceutical quality control laboratory serves one of the most important functions in pharmaceutical production and control ... This includes pharmaceutical laboratories used for in-process and finished product testing," says the U.S. Food and Drug Administration.<ref name="USFDAPharmGuide14">{{cite web |url=https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/pharmaceutical-quality-control-labs-793 |title=Guide to Inspections of Pharmaceutical Quality Control Laboratories |publisher=U.S. Food and Drug Administration |date=13 November 2014 |accessdate=30 June 2022}}</ref> Even the World Health Organization puts focus on their importance, pointing out<ref name="WHOGoodPract10">{{cite web |url=https://www.who.int/publications/m/item/who-good-practices-for-pharmaceutical-quality-control-laboratories---trs-957---annex-1 |title=WHO Good Practices for Pharmaceutical Quality Control Laboratories |publisher=World Health Organization |date=2010 |pages=49 |accessdate=30 June 2022}}</ref>:
 
<blockquote>The government, normally through the national medicines regulatory authority (NMRA), may establish and maintain a pharmaceutical quality control laboratory to carry out the required tests and assays to verify that APIs, excipients and pharmaceutical products meet the prescribed specifications. Large countries may require several pharmaceutical quality control laboratories which conform to national legislation, and appropriate arrangements should, therefore, be in place to monitor their compliance with a quality management system.</blockquote>
 
As Maura May notes for ''Pharmaceutical Manufacturing'', the importance of these labs not only lies in protecting the public and company; they're a product of a competitive environment, where spending, cleanliness, and lead times are vital.<ref name="MayLeaning14">{{cite web |url=https://www.pharmamanufacturing.com/articles/2014/leaning-the-quality-control-laboratory/ |title=Leaning the Quality Control Laboratory |author=May, M. |work=Pharmaceutical Manufacturing |publisher=Putman Media |date=16 September 2014 |accessdate=30 June 2022}}</ref>
 
====Informatics in the pharmaceutical industry====
In the pharmaceutical industry, we can look at how informatics is applied in two key ways:
 
* the drug discovery and R&D phase, found within the pharmaceutical company continuum (sometimes referred to as drug discovery informatics, and pharmacoinformatics)
* the dispersal and use phase, found within the healthcare continuum (sometimes referred to as drug informatics, pharmacy informatics, and pharmacoinformatics)
 
In the first case, drug discovery and development is supported using data analysis and management tools that allow laboratory researchers to model molecules, search and visualize research data, build databases, and track efficacy.<ref name="KumarBio17">{{cite journal |title=Biopharmaceutical Informatics: Supporting biologic drug development via molecular modelling and informatics |journal=Journal of Pharmacy and Pharmacology |author=Kumar, S.; Plotnikov, N.V.; Rouse, J.C.; Singh, S.K. |year=2017 |doi=10.1111/jphp.12700 |pmid=28155992}}</ref> In the other, patients and doctors are provided with more relevant and timely drug information, drug utilization reviews, medication-related policies and procedures, and dispensing practices.<ref name="WolduDrug14">{{cite journal |title=Drug Informatics from Evolution to the Present Outlook |journal=Journal of Health and Medical Informatics |author=Woldu, M.A.; Lenjissa, J.L. |volume=5 |pages=161 |year=2014 |doi=10.4172/2157-7420.1000161}}</ref> The development and propagation of informatics tools to perform these and other important tasks in and out of the lab are furthered by journals such as ''ASSAY and Drug Development Technologies''<ref name="ASSAY">{{cite web |url=https://home.liebertpub.com/publications/assay-and-drug-development-technologies/118/overview |title=ASSAY and Drug Development Technologies |publisher=Mary Ann Liebert, Inc |accessdate=30 June 2022}}</ref> and special interest groups like the Association of Faculties of Pharmacy of Canada (AFPC)'s Pharmacy Informatics SIG.<ref name="AFPCSIG">{{cite web |url=https://www.afpc.info/content/pharmacy-informatics-sig |title=Pharmacy Informatics SIG |publisher=Association of Faculties of Pharmacy of Canada |accessdate=30 June 2022}}</ref>
 
====LIMSwiki resources====
 
* [[:Category:Pharmaceutical LIMS|Pharmaceutical LIMS]]
* [[Pharmacoinformatics]]
* [[Pharmacology]]
* [[Pharmacy automation]]
 
====Further reading====
 
* {{cite book |url=https://books.google.com/books?id=ZmdnEAAAQBAJ&printsec=frontcover |title=Analytical Testing for the Pharmaceutical GMP Laboratory |author=Huynh-Ba, K. |publisher=John Wiley & Sons |year=2022 |pages=416 |isbn=9781119680437}}
 
<div align="center"><hr width="50%"></div>
 
===Power and utility===
[[File:Iwachishi-51-r1.JPG|left|400px]]
{{clear}}
The labs in the power and utility industry cover at least two broad categories: power generation and transmission (electrical engineering and its sub-branches) and water treatment and distribution (water engineering and management, including water purification chemistry). Natural gas transmission and distribution (natural gas engineering) is a third type, though more often than not these labs appear in the upstream and midstream distribution chain (i.e., within the petrochemical industry). In several parts of the world, the development and maintenance of local, regional, and even national broadband internet infrastructure is increasingly also considered a responsibility of the public utility system. These labs are found in the private and academic sectors, and occasionally in government, providing many different services, including (but not limited to)<ref name="BartiromoElect16">{{cite book |url=https://books.google.com/books?id=tt37CwAAQBAJ&printsec=frontcover |title=Electrical Measurements in the Laboratory Practice |author=Bartiromo, R.; De Vincenzi, M. |publisher=Springer |year=2016 |pages=286 |isbn=9783319311029}}</ref><ref name="PizziWater05">{{cite book |url=https://books.google.com/books?id=8nDIGStFlyMC&pg=PA153 |chapter=Chapter 12: Testing and Laboratory Procedures |title=Water Treatment Operator Handbook |author=Pizzi, N.G. |publisher=American Water Works Association |year=2005 |edition=2nd |pages=153–164 |isbn=9781583213711}}</ref>:
 
* hardware design, verification, and optimization
* real-time digital power system (RTDS) simulation
* magnetic material characterization
* short circuit analysis
* high-voltage analysis
* forensic and incident analysis
* environmental simulation testing
* certification testing
* water quality monitoring and analysis
 
''But how do power and utility laboratories intersect the average person's life on a daily basis?''
 
If you live in a location where access to power and clean water is consistent, to the point of being easy to take for granted, then your life is positively affected by a power and utility laboratory. Sometimes things go wrong, though, as they have done in the city of Flint, Michigan, where government leadership failures and cost-cutting measures led to a problematic water treatment plant and water source to continue to be used despite warnings the water was dangerous.<ref name="AugensteinFlint17">{{cite web |url=https://www.laboratoryequipment.com/news/2017/06/flint-water-crisis-five-michigan-officials-charged-involuntary-manslaughter |archiveurl=https://web.archive.org/web/20170615235854/https://www.laboratoryequipment.com/news/2017/06/flint-water-crisis-five-michigan-officials-charged-involuntary-manslaughter |title=Flint Water Crisis: Five Michigan Officials Charged with Involuntary Manslaughter |author=Augenstein, S. |work=Laboratory Equipment |publisher=Advantage Business Media |date=14 June 2017 |archivedate=15 June 2017 |accessdate=30 June 2022}}</ref> The Flint crisis is a reminder that when processes break down in a public utilities lab—whether caused internally or from higher up in government—people get hurt or even die. Power, water, natural gas, and even broadband internet: most enjoy and expect these basic services on a daily basis, and sound laboratory analysis and research ensures this holds true.
 
====Client types====
 
'''Private''' - These company labs provide a wide array of testing services to third-party clients, conduct research, and even provide certification testing.
 
Examples include:
 
* [https://powertechlabs.com/high-power/ Powertech Labs]
* [https://www.sandc.com/en/products--services/services/laboratory-services/ S&C Electric Company]
* [https://www.sintef.no/en/all-laboratories/sintef-energy-lab/ SINTEF]
 
'''Government''' - These are federal, state, or local laboratories responsible for testing and maintaining the safety of water supplies, developing and improving electrical infrastructure, or researching new technologies for public utilities. Occasionally local municipalities will post requests for proposal (RFPs) to contract out regulation-mandated water quality testing rather than invest in the infrastructure to do it their self.
 
Examples include:
 
* [https://www.pompanobeachfl.gov/residents/utilities/water City of Pompano Beach, Florida's Utilities Laboratory]
* [https://www.pnnl.gov/electricity-infrastructure-buildings-division Pacific Northwest National Laboratory's Electricity Infrastructure Group]
* [https://www.powerlab.dk/about_powerlabdk PowerLabDK]
 
'''Academic''' - Academic power and utility labs are largely instructional, with graduate level research helping to expand the field.
 
Examples include:
 
* [https://sites.psu.edu/microgridtestbedpsh/ Penn State Harrisburg University's PPL Electric Utilities Lab]
* [https://www.oit.edu/academics/labs/power-lab Oregon Tech Wilsonville's Power Lab]
* [https://engineering.ucdenver.edu/departments/electrical-engineering/ugrad-labs University of Colorado Denver's Power Laboratory]
 
====Functions====
 
''What are the most common functions?'' analytical, QA/QC, research/design, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' actuators, conductors, electrical converters, energy storage, high-voltage direct-current links, hydroelectric generators, networking equipment, superconductors, transformers, transmission lines, wastewater, water
 
''What sciences are being applied in these labs?'' chemistry, control engineering, electrical engineering, electrochemistry, electromagnetism, electronics, forensic science, nanotechnology, physics, power engineering, signal processing
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Accelerated stress testing, Accelerated weathering, Acoustical, Aging, Anion, Antimicrobial, Artificial pollution, Bioburden, Chemical and biochemical oxygen demand, Cleanliness, Climatics, Comparative Tracking Index, Compliance/Conformance, Compression, Corrosion, Current and current switching, Damage tolerance, Decomposition, Degradation, Dielectric withstand, Efficiency, Electromagnetic compatibility, Electromagnetic interference, Electrostatic discharge, Emissions, Endurance, Environmental stress-cracking resistance, Failure, Fatigue, Fault simulation, Flash point, Geothermal, Hydraulic, Immersion, Impact, Incident analysis, Induction motor fault, Internal arc, Lightning, Macroetch, Mechanical, Mechanical durability, Minimum bactericidal concentration, Minimum inhibitory concentration, Out-of-phase making and breaking, Partial discharge, pH, Plating and coating evaluations, Power quality, Pressure, Proficiency, Radioactivity, Radio interference voltage, Reliability, Resistance - capacitance - inductance, Short-circuit withstand, Short-line fault, Solar, Stress corrosion cracking, Temperature-rise, Tensile, Thermal, Torque, Turbidity, Velocity and flow, Voltage, Weathering
 
'''Industry-related lab equipment may include''':
 
''Electrical engineering'': arbitrary waveform generator, circuit simulator, configurable test grids, current and voltage probes, inverter systems, LCR meter, machine drive and controller systems, magnetometer, microcontroller systems, multimeter, oscilloscope, potentiometer, primary metering unit, real-time digital power system simulator, Rogowski coil, semiconductor curve tracer, spectrum analyzer, tachometer, temperature camera
 
''Water engineering'': adenosine triphosphate meter, biocide test kit, borescope, burette, centrifuge, chlorination test kit, colorimeter, conductivity meter, dissolved oxygen meter, Erlenmeyer flask, hydrometer, incubator, ''Legionella'' test kit, oxidation-reduction potential meter, pH meter, purge and trap equipment, reagents, salinity meter, settling cone, spectrophotometer, thermometer, total dissolved solids meter, turbidity meter
 
''Natural gas engineering'': See Petrochemical section.
 
''What else, if anything, is unique about the labs in the power and utility industry?''
 
Looking at the lab equipment list above, it's relatively easy to tell that those labs focusing on electrical engineering are by and far dry labs, whereas water engineering labs are (no pun intended) of the more typical wet type. A reliable power supply and clean drinking water are easy to take for granted in first-world countries, but both are backed by laboratorians working in very differently equipped labs.
 
====Informatics in the power and utility industry====
The power and utility industry, including its laboratories, are using informatics in a variety of different ways:
 
* Environmental informatics plays a role in power and utility labs, where researchers will use informatics tools to improve the integration and analysis of environmental data (such as from emissions tracking) and even make it available in a collaborative way for further regional or global analysis.<ref name="FalkeCoal08">{{cite web |url=http://www.mageep.wustl.edu/SYMPOSIA/2008/Presentations/Monday/Monday%20PM/1.00_Coal_Falke_Li.pdf |archiveurl=https://web.archive.org/web/20100530091824/http://www.mageep.wustl.edu/SYMPOSIA/2008/Presentations/Monday/Monday%20PM/1.00_Coal_Falke_Li.pdf |format=PDF |title=Coal Utility Informatics & Advanced Energy |author=Falke, S.; Fialkowski, E.; Li, Y.; Biswas, P. |publisher=Washington University in St. Louis |date=08 December 2008 |archivedate=30 May 2010 |accessdate=30 June 2022}}</ref>
 
* Geographic information systems and related imagery tools can also positively contribute to utility companies looking to better build and maintain energy transmission and other utility corridors, limiting vegetation management hours and providing more accurate placements.<ref name="IIIIntegrated16">{{cite web |url=https://www.integrated-informatics.com/post/product-launch-new-lidar-toolkit-announced-for-electric-utility-companies |title=Product Launch: New LiDAR Toolkit Announced for Electric Utility Companies |publisher=Integrated Informatics, Inc |date=01 March 2016 |accessdate=30 June 2022}}</ref>
 
* More future looking, consider "power grid informatics," defined by researcher Klara Nahrstedt of the University of Illinois at Urbana-Champaign as the study of "the structure, algorithms, behavior, and interactions of power grid physical systems and artificial cyber systems (cyberphysical systems) which store, process, access and communicate information."<ref name="NahrstedtElectric15">{{cite web |url=https://tcipg.org/sites/default/files/slides/2015_01-09_nahrstedt.pdf |format=PDF |title=Electric Vehicles and Their Impact on Trustworthy Power Grid Informatics |author=Nahrstedt, K. |publisher=Trustworthy Cyber Infrastructure for the Power Grid |date=09 January 2015 |accessdate=30 June 2022}}</ref> In particular, Nahrstedt looked at the future of electric vehicles—and one today could also extend it to driverless vehicles—and the "cyber-physical components" and data management considerations that come with a regional or even national infrastructure to support them.
 
* Local utilities are using real-time water quality and supply data to improve how they manage water and wastewater treatment.<ref name="CORDIS_DIAMOND16">{{cite web |url=https://cordis.europa.eu/article/id/152075-data-management-for-wastewater-treatment |title=Advanced data management and informatics for the optimum operation and control of wastewater treatment plants |work=Community Research and Development Information Service |publisher=EU Publications Office |date=17 March 2016 |accessdate=30 June 2022}}</ref>
 
====LIMSwiki resources====
 
* [[Hydroinformatics]]
* [[:Category:Power and utility LIMS|Power and utility LIMS]]
 
====Further reading====
 
* {{cite book |url=https://books.google.com/books?id=NlXOBQAAQBAJ&printsec=frontcover |title=Principles of Power Engineering Analysis |editor=Degeneff, R.C.; Hesse, M.H. |publisher=CRC Press |year=2011 |pages=452 |isbn=9781466515345}}
* {{cite book |url=https://books.google.com/books?id=V2LhtAEACAAJ |title=Standard Methods for the Examination of Water and Wastewater |editor=Baird, R.B.; Eaton, A.D.; Rice, E.W.; |edition=23rd |publisher=American Public Health Association |year=2017 |pages=1796 |isbn=9780875532875}}
 
<div align="center"><hr width="50%"></div>
 
===Veterinary===
[[File:Iranian cat in clinic.jpg|left|400px]]
{{clear}}
[[Veterinary medicine|Veterinary]] laboratories are to animals as clinical reference/diagnostic labs are to humans. These labs are designed with many of the same instruments found in a human diagnostic lab, with slight variations, and they conduct both clinical (serving the patient) and public health (serving the population) activities. Veterinary labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to)<ref name="UCDVGLForensics">{{cite web |url=https://vgl.ucdavis.edu/forensics |title=The Veterinary Genetics Laboratory Forensic Section |publisher=University of California - Davis |accessdate=30 June 2022}}</ref><ref name="AVDLS">{{cite web |url=https://agi.alabama.gov/animalindustries/avdl/ |title=Alabama Veterinary Diagnostic Laboratory System |publisher=Alabama Department of Agriculture & Industries |accessdate=30 June 2022}}</ref><ref name="SiroisLab14">{{cite book |url=https://books.google.com/books?id=LW3XBQAAQBAJ&printsec=frontcover |title=Laboratory Procedures for Veterinary Technicians |author=Sirois, M. |publisher=Elsevier Health Sciences |year=2014 |edition=6th |pages=448 |isbn=9780323243575}}</ref>:
 
* diagnostic consultation
* toxicology
* DNA profiling and testing
* disease surveillance
* educational outreach
 
''But how do veterinary laboratories intersect the average person's life on a daily basis?''
 
The most obvious way veterinary labs impact our lives is via the animals we care for. From hamster to elephant, a veterinary laboratory is responsible for diagnosing disease in animals, aiding veterinarians in the treatment process. They also work behind the scenes, investigating cases of food-borne illness and disease outbreaks in animal populations, allowing quicker action against at-fault food manufacturers and potent disease vectors. Without these laboratories, feed, rescue, and companion animals of all types would face worse outcomes, and our edible meat sources would more often be contaminated, putting human health at risk as well.
 
====Client types====
 
'''Private''' - These labs provide third-party analysis and consultation services for animal owners and other veterinary labs.
 
Examples include:
 
* [https://www.antechdiagnostics.com/ Antech Diagnostics, Inc.]
* [https://www.huntersville.carolinavet.com/site/diagnostics Carolina Veterinary Specialists Huntersville]
* [https://www.natvetlab.com/ National Veterinary Laboratory, Inc.]
 
'''Government''' - As previously mentioned, many universities lump veterinary science programs with agriculture programs. You see some of this carry over to the government-run laboratories conducting animal health and disease diagnostic activities, typically though the government's agriculture department. Despite animal science as a scientific discipline arguably being more closely aligned with agriculture science than veterinary science<ref name="FlandersExploring11">{{cite book |url=https://books.google.com/books?id=WT1Ws2o3keYC&pg=PA38 |title=Exploring Animal Science |author=Flanders, F. |publisher=Cengage Learning |pages=38–39 |year=2011 |isbn=9781435439528}}</ref>, those government animal health labs are typically overseen and operated by veterinarians (see examples).
 
Examples include:
 
* [https://agi.alabama.gov/animalindustries/avdl/ Alabama Veterinary Diagnostic Laboratory System]
* [https://agriculture.mo.gov/animals/health/diagnosticlabs.php Missouri State Animal Health Diagnostic Laboratories]
* [https://agri.ohio.gov/programs/animal-disease-diagnostic-lab/ Ohio Animal Disease Diagnostic Laboratory]
 
'''Academic''' - At least in the United States, academic veterinary laboratories typically act as both teaching labs for students and as diagnostic or disease tracking facilities for paying clients and the public. Those providing third-party services will also be accredited by one or more associations such as the American Association of Veterinary Laboratory Diagnosticians.
 
Examples include:
 
* [https://vgl.ucdavis.edu/forensics University of California - Davis' Veterinary Genetics Laboratory Forensic Unit]
* [https://vetmed.illinois.edu/diagnostic-laboratory/ University of Illinois at Urbana-Champaign's Veterinary Diagnostic Laboratory]
* [https://vmdl.missouri.edu/ University of Missouri's Veterinary Medical Diagnostic Laboratory]
 
====Functions====
 
''What are the most common functions?'' analytical, QA/QC, research/design, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' avians, biological specimens, cadavers, canines, DNA, exotic animals, equines, felines
 
''What sciences are being applied in these labs?'' clinical chemistry, clinical microbiology, cytopathology, genetics, hematology, histopathology, immunohematology, immunology, parasitology, pathophysiology, reproductive biology, surgical pathology, toxicology, virology
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Acute contact, Acute oral, Acute toxicity, Allergy, Amino acid analysis, Antimicrobial, Bioaccumulation, Bioburden, Blood culture, Blood gases, Blood typing, Biophysical profile, Calorimetry, Characterization, Chronic toxicity, Colorimetric, Complete blood count, Compliance/Conformance, Cytopathology, Detection, Electrolyte and mineral panel, Genetic, Genotype, Hematocrit, Hemoglobin, Immunoassay, Immunofluorescence, Immunohistochemistry, Infectious disease, Kidney function, Lipid profile, Liver function, Metabolic panel, Minimum bactericidal concentration, Minimum inhibitory concentration, Neurotoxicity, Nutritional, Osmolality, Osmolarity, Parasitic, pH, Proficiency, Protein analysis, Protein characterization, Red blood cell count, Sensitization, Specific gravity, Subchronic toxicity, Thyroid function, Urine culture, Wildlife toxicology
 
'''Industry-related lab equipment may include''':
 
artificial insemination equipment, autoclave, balance, biohazard container, biosafety cabinet, centrifuge, chromatographic, clinical chemistry analyzer, colorimeter, desiccator, dissolved oxygen meter, dry bath, fume hood, homogenizer, hotplate, incubator, magnetic stirrer, microcentrifuge tube, microplate reader, microscope, multi-well plate, orbital shaker, PCR machine, personal protective equipment, pH meter, Petri dish, pipettor, powered air purifying respirators, refractometer, spectrophotometer, syringes, test tube and rack, thermometer, urinalysis device, veterinary table, water bath
 
''What else, if anything, is unique about the labs in the veterinary industry?''
 
While taking a pet to the veterinarian and having a biological sample analyzed is expected and ordinary, many people tend not to also be aware of the public health role many government and academic veterinary laboratories play. Described as veterinary public health (VPH) by the World Health Organization, the veterinarian makes "contributions to the physical, mental and social well-being of humans through an understanding and application of veterinary science".<ref name="WHO_VPH">{{cite web |url=http://www.who.int/zoonoses/vph/en/ |archiveurl=https://web.archive.org/web/20170621200511/http://www.who.int/zoonoses/vph/en/ |title=Veterinary public health (VPH) |work=Zoonoses |publisher=World Health Organization |archivedate=21 June 2017 |accessdate=30 June 2022}}</ref> Noah and Ostrowski break this concept down into six core domains in the ''Merck Veterinary Manual''<ref name="NoahRole">{{cite web |url=https://www.merckvetmanual.com/public-health/public-health-primer/role-of-the-veterinarian-in-public-health-one-health |title=Role of the Veterinarian in Public Health/One Health |work=Merck Veterinary Manual |author=Noah, D.L.; Ostrowski, S.R. |publisher=Merck & Co., Inc |accessdate=30 June 2022}}</ref>:
 
* Diagnosis, surveillance, epidemiology, control, prevention, and elimination of zoonotic diseases
* Laboratory animal facility and diagnostic laboratory health aspect management
* Biomedical research
* Health education and outreach
* Production and control of biologic products and medical devices
* Governmental and legislative activity
 
====Informatics in the veterinary industry====
The idea of using computers and software in veterinary laboratories isn't a new one; the American Veterinary Computer Society (today the Association for Veterinary Informatics [AVI]) was founded in the early 1980s to address such an idea.<ref name="AboutAVI">{{cite web |url=https://avinformatics.org/about-avi |title=About AVI |publisher=Association for Veterinary Informatics |accessdate=30 June 2022}}</ref> However, the application of informatics in the veterinary world arguably hasn't seen the same level of adoption as in clinical medicine. Associations like the AVI are helping to promote the expansion of veterinary informatics research and implementation in veterinary laboratories and offices, and universities such as Indiana University are offering specialized animal informatics programs that "will help students use technology to better understand animal behavior and develop tools to improve the health, well-being, and quality of life for animals."<ref name="VMRCVMAbout">{{cite web |url=https://informatics.indiana.edu/programs/ms-informatics/animal-informatics.html |title=Animal Informatics |publisher=Indian University Luddy School of Informatics, Computing, and Engineering |accessdate=30 June 2022}}</ref> Finally, entities such as Fetch dvm360 provide continuing education conferences to veterinarians on many veterinary informatics topics, including improving compliance, therapeutics, and clinical practice management.<ref name="CVCTalbot">{{cite web |urlhttps://www.fetchdvm360.com/ |title=Fetch dvm360 |publisher=MultiMedia Animal Care, LLC |accessdate=30 June 2022}}</ref> Other applications of informatics in the veterinary lab include the development of diagnostic decision assistance systems, drug information systems, and electronic medical record systems.<ref name="VMRCVMAbout" />
 
====LIMSwiki resources====
 
* [[:Category:Veterinary LIMS|Veterinary LIMS]]
* [[Veterinary medicine]]
 
====Further reading====
 
* {{cite book |url=https://books.google.com/books?id=qTayAAAAQBAJ&printsec=frontcover |title=Veterinary Technician's Handbook of Laboratory Procedures |author=Bellwood, B.; Andrasik-Catton |publisher=John Wiley & Sons |year=2013 |pages=200 |isbn=9781118726044}}
 
<div align="center">-----Go to [[LII:The Laboratories of Our Lives: Labs, Labs Everywhere!/Discussion and closing remarks|the next chapter]] of this guide-----</div>


==References==
==References==
{{Reflist|colwidth=30em}}
{{Reflist|colwidth=30em}}


==Citation information for this chapter==
<!---Place all category tags here-->
'''Chapter''': 6. Labs by industry: Part 4
 
'''Title''': ''The Laboratories of Our Lives: Labs, Labs Everywhere!''
 
'''Edition''': Second edition
 
'''Author for citation''': Shawn E. Douglas
 
'''License for content''': [https://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International]
 
'''Publication date''': July 2022
 
<!--Place all category tags here-->

Revision as of 00:13, 8 May 2024

Sandbox begins below

[[File:|right|520px]] Title: Why are the FAIR data principles increasingly important to research laboratories and their software?

Author for citation: Shawn E. Douglas

License for content: Creative Commons Attribution-ShareAlike 4.0 International

Publication date: May 2024

Introduction

The growing importance of the FAIR principles to research laboratories

The FAIR data principles were published by Wilkinson et al. in 2016 as a stakeholder collaboration driven to see research "objects" (i.e., research data and information of all shapes and formats) become more universally findable, accessible, interoperable, and reusable (FAIR) by both machines and people.[1] The authors released the FAIR principles while recognizing that "one of the grand challenges of data-intensive science ... is to improve knowledge discovery through assisting both humans and their computational agents in the discovery of, access to, and integration and analysis of task-appropriate scientific data and other scholarly digital objects."[1] Since being published, other researchers have taken the somewhat broad set of principles and refined them to their own scientific disciplines, as well as to other types of research objects, including the research software being used by those researchers to generate research objects.[2][3][4][5][6][7]

But why are research laboratories increasingly pushing for more findable, accessible, interoperable, and reusable research objects and software? The short answer, as evidenced by the Wilkinson et al. quote above is that greater innovation can be gained through improved knowledge discovery. The discovery process necessary for that greater innovation—whether through traditional research methods or artificial intelligence (AI)-driven methods—is enhanced when research objects and software are compatible with the core ideas of FAIR.[1][8][9]

A slightly longer answer, suitable for a Q&A topic, requires looking at a few more details of the FAIR principles as applied to both research objects and research software. Research laboratories, whether located in an organization or contracted out as third parties, exist to innovate. That innovation can come in the form of discovering new materials that may or may not have a future application, developing a pharmaceutical to improve patient outcomes for a particular disease, or modifying (for some sort of improvement) an existing food or beverage recipe, among others. In academic research labs, this usually looks like knowledge advancement and the publishing of research results, whereas in industry research labs, this typically looks like more practical applications of research concepts to new or existing products or services. In both cases, research software was likely involved at some point, whether it be something like a researcher-developed bioinformatics application or a commercial vendor-developed electronic laboratory notebook (ELN).

FAIR research objects

Regarding research objects themselves, the FAIR principles essentially say "vast amounts of data and information in largely heterogeneous formats spread across disparate sources both electronic and paper make modern research workflows difficult, tedious, and at times impossible. Further, repeatability, reproducibility, and replicability of openly published or secure internal research results is at risk, giving less confidence to academic peers in the published research, or less confidence to critical stakeholders in the viability of a researched prototype." As such, research objects (which include not only their inherent data and information but also any metadata that describe features of that data and information) need to be[10]:

  • findable, with globally unique and persistent identifiers, rich metadata that link to the identifier of the data described, and an ability to be indexed as an effectively searchable resource;
  • accessible, being able to be retrieved (including metadata of data that is no longer available) by identifiers using secure standardized communication protocols that are open, free, and universally implementable with authentication and authorization mechanisms;
  • interoperable, represented using formal, accessible, shared, and relevant language models and vocabularies that abide by FAIR principles, as well as with qualified linkage to other metadata; and
  • reusable, being richly described by accurate and relevant metadata, released with a clear and accessible data usage license, associated with sufficiently detailed provenance information, and compliant with discipline-specific community standards.

All that talk of unique persistent identifiers, communication protocols, authentication mechanisms, language models (e.g., ontology languages), standardized vocabularies, provenance information, and more could make one's head spin. And, to be fair, it has been challenging for research groups to adopt FAIR, with few widespread international efforts to translate the FAIR principles to broad research. The FAIR Cookbook represents one example of such international collaborative effort, providing "a combination of guidance, technical, hands-on, background and review types to cover the operation steps of FAIR data management."[11] In fact, the Cookbook is illustrative of the challenges of implementing FAIR in research laboratories, particularly given the diverse array of vocabularies used across the wealth of scientific disciplines, such as biobanking, biomedical engineering, botany, food science, and materials science. The way a botanical research organization makes its research objects FAIR is going to require a set of different tools than the materials science research organization. But all of them will turn to informatics tools, data management plans, database tools, and more to not only massage existing research objects to be FAIR but also better ensure newly created research objects are FAIR as well.

FAIR research software

Discussion on research software and its FAIRness is more complicated. It is beyond the scope of this article to go into greater detail about the concepts surrounding FAIR research software, but a brief overview will be attempted. When the FAIR principles were first published, the framework was largely being applied to research objects. However, researchers quickly recognized that any planning around updating processes and systems to make research objects more FAIR would have to be tailored to specific research contexts. This led to recognizing that digital research objects go beyond data and information, and that there is a "specific nature of software" used in research; that research software should not be considered "just data."[4] The end result has been seen researchers begin to apply the core concepts of FAIR to research software, but slightly differently from research objects.[2][3][4][5][6][7]

Unsurprisingly, what researchers consider to be "research software" for purposes of FAIR has historically been interpreted numerous ways. Does the commercial spreadsheet software used to make calculations to research data deserve to be called research software in parallel with the lab-developed bioinformatics application used to generate that data? Given the difficulties of gaining a consensus definition of the term, a 2021 international initiative called FAIRsFAIR made a good-faith effort to define "research software" with the feedback of multiple stakeholders. The short version of their resulting definition is that, "[r]esearch software includes source code files, algorithms, scripts, computational workflows, and executables that were created during the research process, or for a research purpose."[12] Of note is the last part, acknowledging that research software can be developed in the lab during the research process or developed beforehand by, for example, a commercial software developer with a strong purpose of being used for research. As such, Microsoft Excel may not be looked upon as research software, but an ELN or laboratory information management system (LIMS) thoughtfully developed with research activities in mind could be considered research software. More often than not, that software is going to be developed in-house. A growing push for the FAIRification of that software, as well as commercial research solutions, has seen the emergence of "research software engineering" as a domain of practice.[13][14] While in the past, broadly speaking, researchers often cobbled together research software with less a focus on quality and reproducibility and more on getting their research published, today's push for FAIR data and software by academic journals, institutions, and other researchers seeking to collaborate has placed a much greater focus on the concept of "better software, better research"[14][15], with research software engineering efforts focusing on that concept as being vital to future research outcomes. Cohen et al. add that "ultimately, good research software can make the difference between valid, sustainable, reproducible research outputs and short-lived, potentially unreliable or erroneous outputs."[15]


FAIRer research objects, better software, greater innovation

References

  1. 1.0 1.1 1.2 Wilkinson, Mark D.; Dumontier, Michel; Aalbersberg, IJsbrand Jan; Appleton, Gabrielle; Axton, Myles; Baak, Arie; Blomberg, Niklas; Boiten, Jan-Willem et al. (15 March 2016). "The FAIR Guiding Principles for scientific data management and stewardship" (in en). Scientific Data 3 (1): 160018. doi:10.1038/sdata.2016.18. ISSN 2052-4463. PMC PMC4792175. PMID 26978244. https://www.nature.com/articles/sdata201618. 
  2. 2.0 2.1 "fair data principles". PubMed Search. National Institutes of Health, National Library of Medicine. https://pubmed.ncbi.nlm.nih.gov/?term=fair+data+principles. Retrieved 30 April 2024. 
  3. 3.0 3.1 Hasselbring, Wilhelm; Carr, Leslie; Hettrick, Simon; Packer, Heather; Tiropanis, Thanassis (25 February 2020). "From FAIR research data toward FAIR and open research software" (in en). it - Information Technology 62 (1): 39–47. doi:10.1515/itit-2019-0040. ISSN 2196-7032. https://www.degruyter.com/document/doi/10.1515/itit-2019-0040/html. 
  4. 4.0 4.1 4.2 Gruenpeter, M. (23 November 2020). "FAIR + Software: Decoding the principles" (PDF). FAIRsFAIR “Fostering FAIR Data Practices In Europe”. https://www.fairsfair.eu/sites/default/files/FAIR%20%2B%20software.pdf. Retrieved 30 April 2024. 
  5. 5.0 5.1 Barker, Michelle; Chue Hong, Neil P.; Katz, Daniel S.; Lamprecht, Anna-Lena; Martinez-Ortiz, Carlos; Psomopoulos, Fotis; Harrow, Jennifer; Castro, Leyla Jael et al. (14 October 2022). "Introducing the FAIR Principles for research software" (in en). Scientific Data 9 (1): 622. doi:10.1038/s41597-022-01710-x. ISSN 2052-4463. PMC PMC9562067. PMID 36241754. https://www.nature.com/articles/s41597-022-01710-x. 
  6. 6.0 6.1 Patel, Bhavesh; Soundarajan, Sanjay; Ménager, Hervé; Hu, Zicheng (23 August 2023). "Making Biomedical Research Software FAIR: Actionable Step-by-step Guidelines with a User-support Tool" (in en). Scientific Data 10 (1): 557. doi:10.1038/s41597-023-02463-x. ISSN 2052-4463. PMC PMC10447492. PMID 37612312. https://www.nature.com/articles/s41597-023-02463-x. 
  7. 7.0 7.1 Du, Xinsong; Dastmalchi, Farhad; Ye, Hao; Garrett, Timothy J.; Diller, Matthew A.; Liu, Mei; Hogan, William R.; Brochhausen, Mathias et al. (6 February 2023). "Evaluating LC-HRMS metabolomics data processing software using FAIR principles for research software" (in en). Metabolomics 19 (2): 11. doi:10.1007/s11306-023-01974-3. ISSN 1573-3890. https://link.springer.com/10.1007/s11306-023-01974-3. 
  8. Olsen, C. (1 September 2023). "Embracing FAIR Data on the Path to AI-Readiness". Pharma's Almanac. https://www.pharmasalmanac.com/articles/embracing-fair-data-on-the-path-to-ai-readiness. Retrieved 03 May 2024. 
  9. Huerta, E. A.; Blaiszik, Ben; Brinson, L. Catherine; Bouchard, Kristofer E.; Diaz, Daniel; Doglioni, Caterina; Duarte, Javier M.; Emani, Murali et al. (26 July 2023). "FAIR for AI: An interdisciplinary and international community building perspective" (in en). Scientific Data 10 (1): 487. doi:10.1038/s41597-023-02298-6. ISSN 2052-4463. PMC PMC10372139. PMID 37495591. https://www.nature.com/articles/s41597-023-02298-6. 
  10. Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Gu, Wei; Welter, Danielle; Abbassi Daloii, Tooba; Portell-Silva, Laura (30 June 2022). "Introducing the FAIR Principles". D2.1 FAIR Cookbook. doi:10.5281/ZENODO.6783564. https://zenodo.org/record/6783564. 
  11. Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Gu, Wei; Welter, Danielle; Abbassi Daloii, Tooba; Portell-Silva, Laura (30 June 2022). "Introduction". D2.1 FAIR Cookbook. doi:10.5281/ZENODO.6783564. https://zenodo.org/record/6783564. 
  12. Gruenpeter, Morane; Katz, Daniel S.; Lamprecht, Anna-Lena; Honeyman, Tom; Garijo, Daniel; Struck, Alexander; Niehues, Anna; Martinez, Paula Andrea et al. (13 September 2021). "Defining Research Software: a controversial discussion". Zenodo. doi:10.5281/zenodo.5504016. https://zenodo.org/record/5504016. 
  13. Moynihan, G. (7 July 2020). "The Hitchhiker’s Guide to Research Software Engineering: From PhD to RSE". Invenia Blog. Invenia Technical Computing Corporation. https://invenia.github.io/blog/2020/07/07/software-engineering/. 
  14. 14.0 14.1 Woolston, Chris (31 May 2022). "Why science needs more research software engineers" (in en). Nature: d41586–022–01516-2. doi:10.1038/d41586-022-01516-2. ISSN 0028-0836. https://www.nature.com/articles/d41586-022-01516-2. 
  15. 15.0 15.1 Cohen, Jeremy; Katz, Daniel S.; Barker, Michelle; Chue Hong, Neil; Haines, Robert; Jay, Caroline (1 January 2021). "The Four Pillars of Research Software Engineering". IEEE Software 38 (1): 97–105. doi:10.1109/MS.2020.2973362. ISSN 0740-7459. https://ieeexplore.ieee.org/document/8994167/.