Difference between revisions of "User:Shawndouglas/sandbox/sublevel13"

From LIMSWiki
Jump to navigationJump to search
(Saving and adding more.)
(97 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Infobox journal article
<div class="nonumtoc">__TOC__</div>
|name        =
{{ombox
|image        =
| type     = notice
|alt          = <!-- Alternative text for images -->
| style    = width: 960px;
|caption     =  
| text     = This is sublevel13 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p>
|title_full  = DataCare: Big data analytics solution for intelligent healthcare management
|journal     = ''International Journal of Interactive Multimedia and Artificial Intelligence''
|authors      = Baldominos, Alejandro; de Rada, Fernando; Saez, Yago
|affiliations =  Universidad Carlos III de Madrid, Camilo José Cela University
|contact      = Email: abaldomi at inf dot uc3m dot es
|editors      =
|pub_year    = 2018
|vol_iss      = '''4'''(7)
|pages        = 13–20
|doi          = [http://10.9781/ijimai.2017.03.002 10.9781/ijimai.2017.03.002]
|issn        = 1989-1660
|license      = [https://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported]
|website      = [http://www.ijimai.org/journal/node/1621 http://www.ijimai.org/journal/node/1621]
|download    = [http://www.ijimai.org/journal/sites/default/files/files/2017/03/ijimai_4_7_2_pdf_16566.pdf http://www.ijimai.org/journal/sites/default/files/files/2017/03/ijimai_4_7_2_pdf_16566.pdf] (PDF)
}}
}}
{{ombox
| type      = content
| style    = width: 500px;
| text      = This article should not be considered complete until this message box has been removed. This is a work in progress.
}}
==Abstract==
This paper presents DataCare, a solution for intelligent healthcare management. This product is able not only to retrieve and aggregate data from different key performance indicators in healthcare centers, but also to estimate future values for these key performance indicators and, as a result, fire early alerts when undesirable values are about to occur or provide recommendations to improve the quality of service. DataCare’s core processes are built over a free and open-source cross-platform document-oriented database (MongoDB), and Apache Spark, an open-source cluster computing framework. This architecture ensures high scalability capable of processing very high data volumes coming at rapid speeds from a large set of sources. This article describes the architecture designed for this project and the results obtained after conducting a pilot in a healthcare center. Useful conclusions have been drawn regarding how key performance indicators change based on different situations, and how they affect patients’ satisfaction.


'''Keywords''': Architecture, artificial intelligence, big data, healthcare, management
==Sandbox begins below==
<div class="nonumtoc">__TOC__</div>
[[File:|right|400px]]
'''Title''': ''What are the key elements of a LIMS for animal feed testing?''
 
'''Author for citation''': Shawn E. Douglas
 
'''License for content''': [https://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International]
 
'''Publication date''': May 2024


==Introduction==
==Introduction==
When managing a healthcare center, there are many key performance indicators (KPIs) that can be measured, such as the number of events, the waiting time, the number of planned tours, etc. Often, keeping these KPIs within the expected limits is vital to achieving high user satisfaction.


In this paper we present DataCare, a solution for intelligent healthcare management. DataCare provides a complete architecture to retrieve data from sensors installed in the healthcare center, process and analyze it, and finally obtain relevant information, which is displayed in a user-friendly dashboard.


The advantages of DataCare are twofold: first, it is intelligent. Besides retrieving and aggregating data, the system is able to predict future behavior based on past events. This means that the system can fire early alerts when a KPI is expected to have a future value that falls outside the expected boundaries, and it can provide recommendations for improving the behavior and the metrics, or prevent future problems with attending events.
This brief topical article will examine ...
 
'''Note''': Any citation leading to a software vendor's site is not to be considered a recommendation for that vendor. The citation should however still stand as a representational example of what vendors are implementing in their systems.
 
==Feed testing laboratory workflow, workload, and information management==
A feed testing lab can operate within a number of different production, research and development (R&D&#59; academic and industry), and public health contexts. They can<ref name="WardObtain24">{{cite web |url=https://animal.ifas.ufl.edu/media/animalifasufledu/dairy-website/ruminant-nutrition-symposium/archives/12.-WardRNS2024.pdf |format=PDF |author=Ward, R. |title=Obtaining value from a feed/forage lab engagement |work=Florida Ruminant Nutrition Symposium |date=27 February 2024 |accessdate=22 May 2024}}</ref>:
 
*act as a third-party consultant, interpreting analytical data;
*provide research and development support for new and revised formulations;
*provide analytical support for nutrition and contaminant determinations;
*provide development support for analytical methods;
*ensure quality to specifications, accreditor standards, and regulations;
*develop informative databases and data libraries for researchers;
*manage in-house and remote sample collection, labeling, and registration, including on farms; and
*report accurate and timely results to stakeholders, including those responsible for monitoring public health.
 
This wide variety of roles further highlights the already obvious cross-disciplinary nature of analyzing animal feed ingredients and products, and interpreting the resulting data. The human [[Biology|biological]] sciences, [[Veterinary medicine|veterinary sciences]], [[environmental science]]s, [[chemistry]], [[microbiology]], [[radiochemistry]], [[botany]], [[epidemiology]], and more may be involved within a given animal feed analysis laboratory.<ref>{{Cite journal |last=Schnepf |first=Anne |last2=Hille |first2=Katja |last3=van Mark |first3=Gesine |last4=Winkelmann |first4=Tristan |last5=Remm |first5=Karen |last6=Kunze |first6=Katrin |last7=Velleuer |first7=Reinhard |last8=Kreienbrock |first8=Lothar |date=2024-02-06 |title=Basis for a One Health Approach—Inventory of Routine Data Collections on Zoonotic Diseases in Lower Saxony, Germany |url=https://www.mdpi.com/2813-0227/4/1/7 |journal=Zoonotic Diseases |language=en |volume=4 |issue=1 |pages=57–73 |doi=10.3390/zoonoticdis4010007 |issn=2813-0227}}</ref><ref name="PFPLSWHumanAnim18">{{cite web |url=https://www.aphl.org/programs/food_safety/APHL%20Documents/LBPM_Dec2018.pdf |format=PDF |title=Human and Animal Food Testing Laboratories Best Practices Manual |author=Partnership for Food Protection Laboratory Science Workgroup |date=December 2018 |accessdate=22 May 2024}}</ref><ref name=":0">{{Cite journal |last=Wood |first=Hannah |last2=O'Connor |first2=Annette |last3=Sargeant |first3=Jan |last4=Glanville |first4=Julie |date=2018-12 |title=Information retrieval for systematic reviews in food and feed topics: A narrative review |url=https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1289 |journal=Research Synthesis Methods |language=en |volume=9 |issue=4 |pages=527–539 |doi=10.1002/jrsm.1289 |issn=1759-2879}}</ref> Given this significant cross-disciplinarity, it's arguably more challenging for software developers creating [[laboratory informatics]] solutions like a [[laboratory information management system]] (LIMS) that has the breadth to cover the production, R&D, and public health contexts of animal feed testing. In fact, an industry lab performing [[quality control]] (QC) work for a company will likely have zero interest in public health reporting functionality, and a LIMS that focuses on QC workflows may be more highly desirable.
 
That said, this Q&A article will examine LIMS functionality that addresses the needs of all three contexts for animal feed analyses. Understand that the LIMS solution your feed lab may be looking for doesn't require some of the functionality addressed here, particularly in the specialty LIMS requirements section. But also understand the broader context of feed testing and how it highlights some of the challenges of finding a feed testing LIMS that is just right for your lab.
 
==Base LIMS requirements for animal feed testing==
Given the above ...
 
What follows is a list of system functionality important to most any feed testing laboratory, with a majority of that functionality found in many vendor software solutions.<ref name="WardObtain24" /><ref name="PFPLSWHumanAnim18" />
 
'''Test, sample and result management'''
 
*Sample log-in and management, with support for unique IDs
*Sample batching
*[[Barcode]] and RFID support
*End-to-end sample and inventory tracking, through to reporting and disposition
*Pre-defined and configurable industry-specific test and method management, including for bacteria (i.e., microbiology), heavy metals (i.e., chemistry), radionuclides (i.e., radiochemistry), and other substances
*Pre-defined and configurable industry-specific workflows, including for production, R&D, and public health contexts
*Configurable screens and data fields
*Specification management
*Test, sampling, instrument, etc. scheduling and assignment
*Test requesting
*Data import and export
*Raw data management
*Robust query tools
*Analytical tools, including [[data visualization]], statistical analysis, and [[data mining]] tools
*Document and image management
*Version control
*Project and experiment management
*Method and protocol management
*Investigation management
*Facility and sampling site management
*Storage management and monitoring
 
'''Quality, security, and compliance'''


Second, the core system module is built on top of a big data platform. Processing and analysis are run over Apache Spark, and data are stored in MongoDB, thus enabling a highly scalable system that can process large volumes of data coming in at very high speeds.
*[[Quality assurance]] / [[quality control]] mechanisms
*Mechanisms for compliance with ISO 17025 and HACCP, including support for critical control point (CCP) specifications and limits
*Result, method, protocol, batch, and material validation, review, and release
*Data validation
*Trend and control charting for statistical analysis and measurement of uncertainty
*User qualification, performance, and training management
*[[Audit trail]]s and [[chain of custody]] support
*Configurable and granular role-based security
*Configurable system access and use (i.e., authentication requirements, account usage rules, account locking, etc.)
*[[Electronic signature]] support
*Data [[encryption]] and secure communication protocols
*Archiving and [[Data retention|retention]] of data and information
*Configurable data [[backup]]s
*Status updates and alerts
*Environmental monitoring support
*Incident and non-conformance notification, tracking, and management


This article will discuss many aspects of DataCare. The next section will present context for this research by analyzing the state of the art and related work. After that an overview of DataCare’s architecture will be presented, including the three main modules responsible for retrieving data, processing and analyzing it, and displaying the resulting valuable information.
'''Operations management and reporting'''


After the architecture has been explained, the subsequent three sections will describe the preprocessing, processing, and analytics engines in further detail. The design of these systems is crucial to providing a scalable solution with an intelligent behavior. After discussing those engines in detail, the article will then describe the visual analytics engine and the different dashboards that are presented to users.
*Configurable dashboards for monitoring, by product, process, facility, etc.
*Customizable rich-text reporting, with multiple supported output formats
*Custom and industry-specific reporting, including certificates of analysis (CoAs)
*Industry-compliant labeling
*Email integration and other communication support for internal and external stakeholders
*Instrument interfacing and data management, particularly for [[near-infrared spectroscopy]] (NIRS) instruments
*Third-party software interfacing (e.g., LES, scientific data management system [SDMS], other databases)
*Data import, export, and archiving
*Instrument and equipment management, including calibration and maintenance tracking
*Inventory and material management
*Supplier/vendor/customer management
*Flexible but secure client portal for pre-registering samples, printing labels, and viewing results
*Integrated (or online) system help


Finally, the penultimate section will describe how the solution has been validated, and the last section will provide some conclusive remarks, along with potential future work.
==Specialty LIMS requirements==


==State of the art==
*'''Mechanisms to make data and information more FAIR''': Like many other disciplines, modern academic and industrial research of feed ingredient selection, feed formulation, and feed production is plagued by interdisciplinary research data and information (i.e., objects) "in a broad range of [heterogeneous] information formats [that] involve inconsistent vocabulary and difficult‐to‐define concepts."<ref name=":0" /> This makes increasingly attractive data discovery options<ref name=":0" /> such as text mining, cluster searching, and [[artificial intelligence]] (AI) methods less effective, in turn hampering innovation, discovery, and improved health outcomes. As such, research labs of all sorts are increasingly turning to the FAIR principles, which encourage processes that make research objects more findable, accessible, interoperable, and reusable. A handful of software developers have become more attuned to this demand and have developed or modified their systems to produce research objects that are produced using [[metadata]]- and [[Semantics|semantic-driven]] technologies and frameworks.<ref name="DouglasWhyAre24">{{cite web |url=https://www.limswiki.org/index.php/LIMS_Q%26A:Why_are_the_FAIR_data_principles_increasingly_important_to_research_laboratories_and_their_software%3F |title=LIMS Q&A:Why are the FAIR data principles increasingly important to research laboratories and their software? |author=Douglas, S.E. |work=LIMSwiki |date=May 2024 |accessdate=22 May 2024}}</ref> Producing FAIR data is more important to the academic research and public health contexts of feed testing, but can still be useful to other industrial contexts, as having interoperable and reusable data in industry can lead to greater innovation and process improvement.<ref>{{Cite journal |last=van Vlijmen |first=Herman |last2=Mons |first2=Albert |last3=Waalkens |first3=Arne |last4=Franke |first4=Wouter |last5=Baak |first5=Arie |last6=Ruiter |first6=Gerbrand |last7=Kirkpatrick |first7=Christine |last8=da Silva Santos |first8=Luiz Olavo Bonino |last9=Meerman |first9=Bert |last10=Jellema |first10=Renger |last11=Arts |first11=Derk |date=2020-01 |title=The Need of Industry to Go FAIR |url=https://direct.mit.edu/dint/article/2/1-2/276-284/10011 |journal=Data Intelligence |language=en |volume=2 |issue=1-2 |pages=276–284 |doi=10.1162/dint_a_00050 |issn=2641-435X}}</ref> Of course, all animal feed testing labs can benefit when, for example, FAIR-driven, internationally accepted vocabulary and data descriptors for mycotoxin contamination data are used in research and laboratory software.<ref>{{Cite journal |last=Mesfin |first=Addisalem |last2=Lachat |first2=Carl |last3=Vidal |first3=Arnau |last4=Croubels |first4=Siska |last5=Haesaert |first5=Geert |last6=Ndemera |first6=Melody |last7=Okoth |first7=Sheila |last8=Belachew |first8=Tefera |last9=Boevre |first9=Marthe De |last10=De Saeger |first10=Sarah |last11=Matumba |first11=Limbikani |date=2022-02 |title=Essential descriptors for mycotoxin contamination data in food and feed |url=https://linkinghub.elsevier.com/retrieve/pii/S0963996921007833 |journal=Food Research International |language=en |volume=152 |pages=110883 |doi=10.1016/j.foodres.2021.110883}}</ref> This leads into...
Because healthcare services are very complex and life-critical, many works have tackled the design of healthcare management systems, aimed at monitoring metrics in order to detect undesirable behaviors that decrease their satisfaction or even threaten their safety.
*'''Support for standardized and controlled vocabularies''': By extension, this gets into the matter of improved interoperability of feed testing results from different laboratories, particularly government labs in different jurisdictions responsible for monitoring contaminates in animal feed.<ref name="AAFCOSACStrat22">{{cite web |url=https://www.aafco.org/wp-content/uploads/2023/07/SAC_Strategic_Plan_2023-2025.pdf |format=PDF |title=Strategic Plan 2023-2025 |author=The Association of American Feed Control Officials, Strategic Affairs Committee |publisher=AAFCO |page=14 |date=16 November 2022 |accessdate=22 May 2024}}</ref> The Association of American Feed Control Officials (AAFCO) Strategic Affairs Committee (SAC) highlight this in their Strategic Plan for 2023–2025, stating that in order to "promote and integrate laboratory technology, methods, quality systems, and collaboration in support of animal food safety systems," the different LIMS used across various states demand an integrated IT environment where "comparable results from different labs" can effectively be made.<ref name="AAFCOSACStrat22" />


Discussion on the design and implementation of the healthcare management system is not new. In the 2000s, Curtright ''et al.''<ref name="CurtrightStat00">{{cite journal |title=Strategic performance management: Development of a performance measurement system at the Mayo Clinic |journal=Journal of Healthcare Management |author=Curtwright, J.W.; Stolp-Smith, S.C.; Edell, E.S. |volume=45 |issue=1 |pages=58–68 |year=2000 |pmid=11066953}}</ref> described a system to monitor KPIs, summarizing them in a dashboard report, with a real-world application in the Mayo Clinic. Also, Griffith and King<ref name="GriffithChampion00">{{cite journal |title=Championship management for healthcare organizations |journal=Journal of Healthcare Management |author=Griffith, J.R. |volume=45 |issue=1 |pages=17–30 |year=2000 |pmid=11066948}}</ref> proposed to establish a “championship” where those healthcare systems with consistently good metrics would help improve decision making processes.
==Conclusion==


Some of these works explore the sensing technology that enable proposals. For instance, Ngai ''et al.''<ref name="NgaiDesign09">{{cite journal |title=Design of an RFID-based Healthcare Management System using an Information System Design Theory |journal=Information Systems Frontiers |author=Ngai. E.W.T.; Poon, J.K.L.; Suk, F.F.C.; Ng, C.C. |volume=11 |issue=4 |pages=405–417 |year=2009 |doi=10.1007/s10796-009-9154-3}}</ref> focus on how RFID technology can be applied for building a healthcare management system, yet it is only implemented in a quasi real-world setting. Ting ''et al.''<ref name="TingCritical11">{{cite journal |title=Critical elements and lessons learnt from the implementation of an RFID-enabled healthcare management system in a medical organization |journal=Journal of Medical Systems |author=Ting, S.L.; Kwok, S.K.; Tsang, A.H.; Lee, W.B. |volume=35 |issue=4 |pages=657–69 |year=2011 |doi=10.1007/s10916-009-9403-5}}</ref> also focus on the application of RFID technology to such a project, from the perspective of its preparation, implementation, and maintenance.


==References==
==References==
{{Reflist|colwidth=30em}}
{{Reflist|colwidth=30em}}
 
<!---Place all category tags here-->
==Notes==
This presentation is faithful to the original, with only a few minor changes to presentation. Grammar has been updated for clarity. In some cases important information was missing from the references, and that information was added. The original article lists references alphabetically, but this version — by design — lists them in order of appearance.
 
<!--Place all category tags here-->
[[Category:LIMSwiki journal articles (added in 2018)‎]]
[[Category:LIMSwiki journal articles (all)‎]]
[[Category:LIMSwiki journal articles on big data‎‎]]
[[Category:LIMSwiki journal articles on health informatics‎‎]]

Revision as of 21:45, 22 May 2024

Sandbox begins below

[[File:|right|400px]] Title: What are the key elements of a LIMS for animal feed testing?

Author for citation: Shawn E. Douglas

License for content: Creative Commons Attribution-ShareAlike 4.0 International

Publication date: May 2024

Introduction

This brief topical article will examine ...

Note: Any citation leading to a software vendor's site is not to be considered a recommendation for that vendor. The citation should however still stand as a representational example of what vendors are implementing in their systems.

Feed testing laboratory workflow, workload, and information management

A feed testing lab can operate within a number of different production, research and development (R&D; academic and industry), and public health contexts. They can[1]:

  • act as a third-party consultant, interpreting analytical data;
  • provide research and development support for new and revised formulations;
  • provide analytical support for nutrition and contaminant determinations;
  • provide development support for analytical methods;
  • ensure quality to specifications, accreditor standards, and regulations;
  • develop informative databases and data libraries for researchers;
  • manage in-house and remote sample collection, labeling, and registration, including on farms; and
  • report accurate and timely results to stakeholders, including those responsible for monitoring public health.

This wide variety of roles further highlights the already obvious cross-disciplinary nature of analyzing animal feed ingredients and products, and interpreting the resulting data. The human biological sciences, veterinary sciences, environmental sciences, chemistry, microbiology, radiochemistry, botany, epidemiology, and more may be involved within a given animal feed analysis laboratory.[2][3][4] Given this significant cross-disciplinarity, it's arguably more challenging for software developers creating laboratory informatics solutions like a laboratory information management system (LIMS) that has the breadth to cover the production, R&D, and public health contexts of animal feed testing. In fact, an industry lab performing quality control (QC) work for a company will likely have zero interest in public health reporting functionality, and a LIMS that focuses on QC workflows may be more highly desirable.

That said, this Q&A article will examine LIMS functionality that addresses the needs of all three contexts for animal feed analyses. Understand that the LIMS solution your feed lab may be looking for doesn't require some of the functionality addressed here, particularly in the specialty LIMS requirements section. But also understand the broader context of feed testing and how it highlights some of the challenges of finding a feed testing LIMS that is just right for your lab.

Base LIMS requirements for animal feed testing

Given the above ...

What follows is a list of system functionality important to most any feed testing laboratory, with a majority of that functionality found in many vendor software solutions.[1][3]

Test, sample and result management

  • Sample log-in and management, with support for unique IDs
  • Sample batching
  • Barcode and RFID support
  • End-to-end sample and inventory tracking, through to reporting and disposition
  • Pre-defined and configurable industry-specific test and method management, including for bacteria (i.e., microbiology), heavy metals (i.e., chemistry), radionuclides (i.e., radiochemistry), and other substances
  • Pre-defined and configurable industry-specific workflows, including for production, R&D, and public health contexts
  • Configurable screens and data fields
  • Specification management
  • Test, sampling, instrument, etc. scheduling and assignment
  • Test requesting
  • Data import and export
  • Raw data management
  • Robust query tools
  • Analytical tools, including data visualization, statistical analysis, and data mining tools
  • Document and image management
  • Version control
  • Project and experiment management
  • Method and protocol management
  • Investigation management
  • Facility and sampling site management
  • Storage management and monitoring

Quality, security, and compliance

  • Quality assurance / quality control mechanisms
  • Mechanisms for compliance with ISO 17025 and HACCP, including support for critical control point (CCP) specifications and limits
  • Result, method, protocol, batch, and material validation, review, and release
  • Data validation
  • Trend and control charting for statistical analysis and measurement of uncertainty
  • User qualification, performance, and training management
  • Audit trails and chain of custody support
  • Configurable and granular role-based security
  • Configurable system access and use (i.e., authentication requirements, account usage rules, account locking, etc.)
  • Electronic signature support
  • Data encryption and secure communication protocols
  • Archiving and retention of data and information
  • Configurable data backups
  • Status updates and alerts
  • Environmental monitoring support
  • Incident and non-conformance notification, tracking, and management

Operations management and reporting

  • Configurable dashboards for monitoring, by product, process, facility, etc.
  • Customizable rich-text reporting, with multiple supported output formats
  • Custom and industry-specific reporting, including certificates of analysis (CoAs)
  • Industry-compliant labeling
  • Email integration and other communication support for internal and external stakeholders
  • Instrument interfacing and data management, particularly for near-infrared spectroscopy (NIRS) instruments
  • Third-party software interfacing (e.g., LES, scientific data management system [SDMS], other databases)
  • Data import, export, and archiving
  • Instrument and equipment management, including calibration and maintenance tracking
  • Inventory and material management
  • Supplier/vendor/customer management
  • Flexible but secure client portal for pre-registering samples, printing labels, and viewing results
  • Integrated (or online) system help

Specialty LIMS requirements

  • Mechanisms to make data and information more FAIR: Like many other disciplines, modern academic and industrial research of feed ingredient selection, feed formulation, and feed production is plagued by interdisciplinary research data and information (i.e., objects) "in a broad range of [heterogeneous] information formats [that] involve inconsistent vocabulary and difficult‐to‐define concepts."[4] This makes increasingly attractive data discovery options[4] such as text mining, cluster searching, and artificial intelligence (AI) methods less effective, in turn hampering innovation, discovery, and improved health outcomes. As such, research labs of all sorts are increasingly turning to the FAIR principles, which encourage processes that make research objects more findable, accessible, interoperable, and reusable. A handful of software developers have become more attuned to this demand and have developed or modified their systems to produce research objects that are produced using metadata- and semantic-driven technologies and frameworks.[5] Producing FAIR data is more important to the academic research and public health contexts of feed testing, but can still be useful to other industrial contexts, as having interoperable and reusable data in industry can lead to greater innovation and process improvement.[6] Of course, all animal feed testing labs can benefit when, for example, FAIR-driven, internationally accepted vocabulary and data descriptors for mycotoxin contamination data are used in research and laboratory software.[7] This leads into...
  • Support for standardized and controlled vocabularies: By extension, this gets into the matter of improved interoperability of feed testing results from different laboratories, particularly government labs in different jurisdictions responsible for monitoring contaminates in animal feed.[8] The Association of American Feed Control Officials (AAFCO) Strategic Affairs Committee (SAC) highlight this in their Strategic Plan for 2023–2025, stating that in order to "promote and integrate laboratory technology, methods, quality systems, and collaboration in support of animal food safety systems," the different LIMS used across various states demand an integrated IT environment where "comparable results from different labs" can effectively be made.[8]

Conclusion

References

  1. 1.0 1.1 Ward, R. (27 February 2024). "Obtaining value from a feed/forage lab engagement" (PDF). Florida Ruminant Nutrition Symposium. https://animal.ifas.ufl.edu/media/animalifasufledu/dairy-website/ruminant-nutrition-symposium/archives/12.-WardRNS2024.pdf. Retrieved 22 May 2024. 
  2. Schnepf, Anne; Hille, Katja; van Mark, Gesine; Winkelmann, Tristan; Remm, Karen; Kunze, Katrin; Velleuer, Reinhard; Kreienbrock, Lothar (6 February 2024). "Basis for a One Health Approach—Inventory of Routine Data Collections on Zoonotic Diseases in Lower Saxony, Germany" (in en). Zoonotic Diseases 4 (1): 57–73. doi:10.3390/zoonoticdis4010007. ISSN 2813-0227. https://www.mdpi.com/2813-0227/4/1/7. 
  3. 3.0 3.1 Partnership for Food Protection Laboratory Science Workgroup (December 2018). "Human and Animal Food Testing Laboratories Best Practices Manual" (PDF). https://www.aphl.org/programs/food_safety/APHL%20Documents/LBPM_Dec2018.pdf. Retrieved 22 May 2024. 
  4. 4.0 4.1 4.2 Wood, Hannah; O'Connor, Annette; Sargeant, Jan; Glanville, Julie (1 December 2018). "Information retrieval for systematic reviews in food and feed topics: A narrative review" (in en). Research Synthesis Methods 9 (4): 527–539. doi:10.1002/jrsm.1289. ISSN 1759-2879. https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1289. 
  5. Douglas, S.E. (May 2024). "LIMS Q&A:Why are the FAIR data principles increasingly important to research laboratories and their software?". LIMSwiki. https://www.limswiki.org/index.php/LIMS_Q%26A:Why_are_the_FAIR_data_principles_increasingly_important_to_research_laboratories_and_their_software%3F. Retrieved 22 May 2024. 
  6. van Vlijmen, Herman; Mons, Albert; Waalkens, Arne; Franke, Wouter; Baak, Arie; Ruiter, Gerbrand; Kirkpatrick, Christine; da Silva Santos, Luiz Olavo Bonino et al. (1 January 2020). "The Need of Industry to Go FAIR" (in en). Data Intelligence 2 (1-2): 276–284. doi:10.1162/dint_a_00050. ISSN 2641-435X. https://direct.mit.edu/dint/article/2/1-2/276-284/10011. 
  7. Mesfin, Addisalem; Lachat, Carl; Vidal, Arnau; Croubels, Siska; Haesaert, Geert; Ndemera, Melody; Okoth, Sheila; Belachew, Tefera et al. (1 February 2022). "Essential descriptors for mycotoxin contamination data in food and feed" (in en). Food Research International 152: 110883. doi:10.1016/j.foodres.2021.110883. https://linkinghub.elsevier.com/retrieve/pii/S0963996921007833. 
  8. 8.0 8.1 The Association of American Feed Control Officials, Strategic Affairs Committee (16 November 2022). "Strategic Plan 2023-2025" (PDF). AAFCO. p. 14. https://www.aafco.org/wp-content/uploads/2023/07/SAC_Strategic_Plan_2023-2025.pdf. Retrieved 22 May 2024.