Difference between revisions of "Journal:Introductory evidence on data management and practice systems of forensic autopsies in sudden and unnatural deaths: A scoping review"

From LIMSWiki
Jump to navigationJump to search
(Saving and adding more.)
(Saving and adding more.)
Line 28: Line 28:
'''Background''': The investigation into sudden unexpected and unnatural deaths supports criminal justice, aids in litigation, and provides important information for [[public health]], including surveillance, [[epidemiology]], and prevention programs. The use of mortality data to convey trends can inform policy development and resource allocations. Hence, data practices and [[Information management|data management systems]] in [[Forensic science|forensic medicine]] are critical. This study scoped literature and described the body of knowledge on data management and practice systems in forensic medicine.
'''Background''': The investigation into sudden unexpected and unnatural deaths supports criminal justice, aids in litigation, and provides important information for [[public health]], including surveillance, [[epidemiology]], and prevention programs. The use of mortality data to convey trends can inform policy development and resource allocations. Hence, data practices and [[Information management|data management systems]] in [[Forensic science|forensic medicine]] are critical. This study scoped literature and described the body of knowledge on data management and practice systems in forensic medicine.


'''Methods''': Five steps of the methodological framework of Arksey and O’Malley guided this scoping review. A combination of keywords, Boolean terms, and medical subject headings was used to search [[PubMed]], EBSCOhost (CINAHL with full text and Health Sources), Cochrane Library, Scopus, Web of Science, Science Direct, WorldCat, and Google Scholar from June 18–24 of 2020, and again in November 2021, for peer review papers. This study included articles involving unnatural deaths, focused on data practice or data management systems, relating to forensic medicine, all study designs, and published in English. Screening, selection, and data extraction were conducted by two reviews. Thematic analysis was conducted, and the results were reported using both quantitative and qualitative methods.
'''Methods''': Five steps of the methodological framework of Arksey and O’Malley guided this scoping review. A combination of keywords, Boolean terms, and medical subject headings was used to search [[PubMed]], EBSCOhost (CINAHL with full text and Health Sources), Cochrane Library, Scopus, Web of Science, Science Direct, WorldCat, and Google Scholar for peer review papers in English from June 18–24 of 2020, with an updated search also occurring in November 2021. This study included articles involving unnatural deaths, focused on data practice or data management systems, relating to forensic medicine, all study designs, and published in English. Screening, selection, and data extraction were conducted by two reviewers. Thematic analysis was conducted, and the results were reported using both quantitative and qualitative methods.


'''Results''': Of the examined 23,059 articles, 16 met this study’s inclusion criteria. The included articles were published between 2008 and 2019. Eight of the 16 articles were published between 2017 and 2019. Most of the included studies were conducted in the United States (5) and Australia/New Zealand (4). Only two publications were from lower- and middle-income countries (LMICs; Nigeria and Mexico), and the remaining 14 were from high-income countries (Italy, Denmark, US, Australia, New Zealand, Japan, Switzerland, and Canada). The data management systems found in this study were as follows: Virtopsy, Canadian Coroner and Medical Examiner Database, Infant Injury Database, Ibadan pilot fatal injury surveillance system, Medical Examiners and Coroners Alert System, National Violent Deaths Reporting System, AM/PM Database, Tokyo CDISC/ODM, and National Coronial Information System.
'''Results''': Of the examined 23,059 articles, 16 met this study’s inclusion criteria. The included articles were published between 2008 and 2019. Eight of the 16 articles were published between 2017 and 2019. Most of the included studies were conducted in the United States (5) and Australia/New Zealand (4). Only two publications were from lower- and middle-income countries (LMICs; Nigeria and Mexico), and the remaining 14 were from high-income countries (Italy, Denmark, US, Australia, New Zealand, Japan, Switzerland, and Canada). The data management systems found in this study were as follows: Virtopsy, Canadian Coroner and Medical Examiner Database, Infant Injury Database, Ibadan pilot fatal injury surveillance system, Medical Examiners and Coroners Alert System, National Violent Deaths Reporting System, AM/PM Database, Tokyo CDISC/ODM, and National Coronial Information System.
Line 52: Line 52:


==Methods==
==Methods==
This study’s protocol was developed ''a priori'' and published. [Prahladh and van Wyk  2020] This study used the Arksey and O’Malley framework to conduct a scoping review, which includes the following: (i) the research question was identified, (ii) relevant studies were identified, (iii) eligible studies were selected, (iv) the data was charted, and (v) the results were collated and summarized. [Arksey and O'Malley 2005; PRISMA 2018]


===Identifying the research question===
The main research question was “In the last 10 years, what evidence on data management and practice systems and their benefits and challenges in forensic medicine exist globally?" This study’s population, concept, and context were sudden/unnatural deaths, data practices, and forensic medicine (autopsies or post-mortem examinations) globally, respectively. The research sub-questions were as follows:


# What evidence exists on data management and practice systems in forensic medicine?
# What are the reported benefits and challenges of the data management and practice systems used in forensic medicine?
===Identifying relevant studies===
A systematic international search of both gray literature and published literature was done to retrieve articles relating to data practice, use, benefits, and challenges in forensic medicine. A combination of keywords, Boolean terms, and medical subject headings was used to search [[PubMed]], EBSCOhost (Academic Search Complete, CINAHL with full text, and Health Sources), Cochrane Library, Scopus, Web of Science, Science Direct, WorldCat, and Google Scholar for peer review papers in English from June 18–24 of 2020, with an updated search also occurring in November 2021. Study design limitations were removed. The search strategy was piloted to check the appropriateness of keywords and databases. The results were reviewed by the research team to ensure the validity of the search strategy in PubMed. A manual search was conducted of the references of the included studies, and the World Health Organization (WHO) website was also searched. Each search was adequately documented, as illustrated in Supplementary File 1. The Peer Review of Electronic Search Strategies (PRESS) statement guided this study’s electronic search strategy. [McGowan et al. 2016] All citations were managed using the EndNote X9 reference manager.
===Selection of articles and eligibility criteria===
The principal investigator conducted the database searches and title screening using this study’s eligibility criteria. The search strategy and screening tools were piloted to calibrate operators, increase consistency, and fine-tune the methods. A second reviewer reviewed the retrieved titles to ensure completeness before the abstract screening. Subsequently, the cleaned EndNote library was shared among the review team after the removal of duplicate titles. Using an electronic screening tool developed in Google forms, two reviewers independently screened the abstracts and full texts and categorized them into “include” or “exclude” categories based on this study’s eligibility criteria. The review team met throughout the screening process and resolved the discrepancies between the two reviewers at the abstract screening stage through discussions until a consensus was reached, though there were no significant disagreements among the reviewers. It was decided that the articles would be selected on a minimum agreement of at least 50% between the two reviewers due to the complex and specialized field the review would entail. The second reviewer, however, resolved the discrepancies between the principal investigator and the third reviewer at the full-text screening phase. The PRISMA flow diagram was used to account for all the articles. The eligibility criteria used in this study are outlined below:
'''Inclusion criteria'''
* Studies that involved unnatural deaths
* Studies that focused on forensic medicine (autopsies/post-mortem)
* Articles that reported data practices such as use, benefits, and challenges
* Articles published from 2008 to 2021
* Articles published in the English language
* All study designs
'''Exclusion criteria'''
* Articles that do not involve forensic medicine, pathology, and/or autopsies
* Studies with no clear targeted population
* Studies where full-text articles could not be obtained
* Articles reporting photo capture/imaging programs
* Non-English publications
===Charting the data===
The data for this study were collected using a spreadsheet comprising of the following: bibliographic details, publication year, study design, study setting, data practices relating to forensic medicine, uses, benefits, challenges, and conclusion and recommendations. The form was pilot tested by two reviewers independently, and all discrepancies were resolved before its usage. Finally, two reviewers performed the data extraction using both inductive and deductive approaches. Subsequent discrepancies were resolved through discussion by the review team.
===Collating, summarizing, and reporting the results===
Thematic content analysis was conducted for this study. The emerging themes and subthemes relating to data practices in forensic medicine were collated, summarized, and reported narratively. However, the bibliographic details of the included studies, such as design and publication year, were reported quantitatively and presented as percentages.
==Results==





Revision as of 22:51, 22 February 2023

Full article title Introductory evidence on data management and practice systems of forensic autopsies in sudden and unnatural deaths: A scoping review
Journal Egyptian Journal of Forensic Sciences
Author(s) Prahladh, Salona; van Wyk, Jacqueline
Author affiliation(s) Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal
Primary contact Email: prahladhs at ukzn dot ac dot za
Year published 2022
Volume and issue 12
Article # 38
DOI 10.1186/s41935-022-00293-3
ISSN 2090-5939
Distribution license Creative Commons Attribution 4.0 International
Website https://ejfs.springeropen.com/articles/10.1186/s41935-022-00293-3
Download https://ejfs.springeropen.com/counter/pdf/10.1186/s41935-022-00293-3.pdf (PDF)

Abstract

Background: The investigation into sudden unexpected and unnatural deaths supports criminal justice, aids in litigation, and provides important information for public health, including surveillance, epidemiology, and prevention programs. The use of mortality data to convey trends can inform policy development and resource allocations. Hence, data practices and data management systems in forensic medicine are critical. This study scoped literature and described the body of knowledge on data management and practice systems in forensic medicine.

Methods: Five steps of the methodological framework of Arksey and O’Malley guided this scoping review. A combination of keywords, Boolean terms, and medical subject headings was used to search PubMed, EBSCOhost (CINAHL with full text and Health Sources), Cochrane Library, Scopus, Web of Science, Science Direct, WorldCat, and Google Scholar for peer review papers in English from June 18–24 of 2020, with an updated search also occurring in November 2021. This study included articles involving unnatural deaths, focused on data practice or data management systems, relating to forensic medicine, all study designs, and published in English. Screening, selection, and data extraction were conducted by two reviewers. Thematic analysis was conducted, and the results were reported using both quantitative and qualitative methods.

Results: Of the examined 23,059 articles, 16 met this study’s inclusion criteria. The included articles were published between 2008 and 2019. Eight of the 16 articles were published between 2017 and 2019. Most of the included studies were conducted in the United States (5) and Australia/New Zealand (4). Only two publications were from lower- and middle-income countries (LMICs; Nigeria and Mexico), and the remaining 14 were from high-income countries (Italy, Denmark, US, Australia, New Zealand, Japan, Switzerland, and Canada). The data management systems found in this study were as follows: Virtopsy, Canadian Coroner and Medical Examiner Database, Infant Injury Database, Ibadan pilot fatal injury surveillance system, Medical Examiners and Coroners Alert System, National Violent Deaths Reporting System, AM/PM Database, Tokyo CDISC/ODM, and National Coronial Information System.

Conclusions: This study’s results revealed limited articles relating to data management and practice systems in forensic medicine—particularly in LMICs—indicating there is a prevalence of unnatural deaths in LMICs. This study, therefore, recommends research on data management and practice systems relating to forensic medicine in LMICs to inform policy decisions.

Keywords: unnatural death, data practice, data management systems, autopsy, post-mortem examination, forensic medicine, pathology

Background

The global burden of trauma, particularly in low- and middle-income countries (LMICs) places a large strain on resources, and therefore, the diagnostic value of autopsies must be reiterated. [Salona Prahladh 2018] The use of autopsies remains the gold standard in assessing standards of medical care. There is a concerning decline in autopsies even though their value to the medical fraternity is acknowledged. [Aase 2013; Bagher et al. 2015] Forensic medicine and forensic pathology apply scientific and medical knowledge to inquests, and the autopsy is frequently regarded as the focus of the death investigation. The investigation into sudden unexpected and unnatural deaths supports criminal justice, aids in litigation, and provides important information for public health, including surveillance, epidemiology, and prevention programs. [Bagher et al. 2015; Tseng et al. 2018; Barbería et al. 2018; Pan et al. 2019; Soto Martinez et al. 2019] The evidence serves to inform policy not only for injury prevention and control, but also to prevent suicide, violence, or substance abuse. [Barbería et al. 2018; Pan et al. 2019; Rao et al. 2005; Grills et al. 2011; Prinsloo 2019; Willcox et al. 2020]

Globally, death investigations are conducted according to prevailing legislation, which differs from country to country. Historically, the coroner system was formalized into law by England’s King Richard I in 1194, with the first coroners being knights. [Koehler 2016] The coroner system from England was introduced in the 1600s by American colonists, becoming an important part of the death investigation system in what would become the United States of America. However, the role of the office was later reduced to the medicolegal examination of a body and the determination of the cause and manner of death. [Koehler 2016] Throughout the Middle Ages, the functions of the coroner included conducting inquests, attending to and inspecting the dead, and investigating suspicious deaths.

In the US, coroners are generally public officials with minimal to no medical training. Some coroners only serve part-time capacities, and they also often have other full-time employment. The medical examiner system was introduced due to public dissatisfaction with the coroner system, accusations of corruption, and an increased need to have highly trained personnel in the death investigation. [Koehler 2016] This led to the emergence of a separate discipline of forensic medicine, which began in the seventeenth century. [Choo and Choi 2012] The first medical examiner system was introduced in Massachusetts in 1877.

In 1959, the medical subspecialty of forensic pathology was formally certified, and medical examiners were trained in pathology. Forensic pathology is viewed as a subspecialty of anatomical pathology in countries such as Canada and the United Kingdom. In countries such as South Africa and Australia, one may train solely in forensic pathology for a minimum of a year (usually more), with additional training in anatomical pathology. In South Africa, the medicolegal death investigation is conducted primarily in terms of the Inquests Act (Act 58 of 1959). The medicolegal autopsies are performed by medical practitioners, but due to the large annual number of unnatural deaths and the small number of qualified forensic pathologists in South Africa, a large number of these autopsies are performed by colleagues with limited formal training in performing autopsies. [du Toit-Prinsloo and Saayman 2012]

The fundamental essence of forensic pathologists’ work is to investigate and report the cause of death. The importance of reporting the cause of death is reiterated and forms the basis of The Global Burden of Disease study. [Roth et al. 2018] This comprehensive worldwide observational epidemiological study describes mortality and morbidity from major diseases, injuries, and risk factors to health at global, national, and regional levels. Mortality reporting systems can help to prioritize health system investments, track progress towards global development goals, and guide scientific research. [Roth et al. 2018] The Global Burden of Disease study acknowledges the need for wider adoption and improvement of these systems because continuous reporting of cause-specific mortality in many countries represents a success for global health.

Information derived from autopsies has historically been paper-documented, filed, and archived. With the current age of technology, this information can be stored and managed electronically to better ensure reporting that is current, relevant, and contributory to training and service delivery, policy implementation, and social interventions. The current COVID-19 pandemic has accentuated the importance of wireless technology and the use of the internet to transcend normal communications. Due to safety reasons, much work has to be conducted remotely in many business sectors, including the medical sector. General practitioners conducted consultations virtually to adhere to social distancing and safety measures, and telephonic communication and telemedicine became a necessity due to the pandemic. At this current point in time, we are forced to be open-minded to integrate technology into our daily work lives.

This scoping review was conducted to map the evidence on data management and practice systems, their use, benefits, and challenges in forensic medicine. The information gained on the use and availability of digital technologies and their strengths and limitations to collect autopsy data can inform models to suit similar purposes in forensic medicine in LMICs.

Methods

This study’s protocol was developed a priori and published. [Prahladh and van Wyk 2020] This study used the Arksey and O’Malley framework to conduct a scoping review, which includes the following: (i) the research question was identified, (ii) relevant studies were identified, (iii) eligible studies were selected, (iv) the data was charted, and (v) the results were collated and summarized. [Arksey and O'Malley 2005; PRISMA 2018]

Identifying the research question

The main research question was “In the last 10 years, what evidence on data management and practice systems and their benefits and challenges in forensic medicine exist globally?" This study’s population, concept, and context were sudden/unnatural deaths, data practices, and forensic medicine (autopsies or post-mortem examinations) globally, respectively. The research sub-questions were as follows:

  1. What evidence exists on data management and practice systems in forensic medicine?
  2. What are the reported benefits and challenges of the data management and practice systems used in forensic medicine?

Identifying relevant studies

A systematic international search of both gray literature and published literature was done to retrieve articles relating to data practice, use, benefits, and challenges in forensic medicine. A combination of keywords, Boolean terms, and medical subject headings was used to search PubMed, EBSCOhost (Academic Search Complete, CINAHL with full text, and Health Sources), Cochrane Library, Scopus, Web of Science, Science Direct, WorldCat, and Google Scholar for peer review papers in English from June 18–24 of 2020, with an updated search also occurring in November 2021. Study design limitations were removed. The search strategy was piloted to check the appropriateness of keywords and databases. The results were reviewed by the research team to ensure the validity of the search strategy in PubMed. A manual search was conducted of the references of the included studies, and the World Health Organization (WHO) website was also searched. Each search was adequately documented, as illustrated in Supplementary File 1. The Peer Review of Electronic Search Strategies (PRESS) statement guided this study’s electronic search strategy. [McGowan et al. 2016] All citations were managed using the EndNote X9 reference manager.

Selection of articles and eligibility criteria

The principal investigator conducted the database searches and title screening using this study’s eligibility criteria. The search strategy and screening tools were piloted to calibrate operators, increase consistency, and fine-tune the methods. A second reviewer reviewed the retrieved titles to ensure completeness before the abstract screening. Subsequently, the cleaned EndNote library was shared among the review team after the removal of duplicate titles. Using an electronic screening tool developed in Google forms, two reviewers independently screened the abstracts and full texts and categorized them into “include” or “exclude” categories based on this study’s eligibility criteria. The review team met throughout the screening process and resolved the discrepancies between the two reviewers at the abstract screening stage through discussions until a consensus was reached, though there were no significant disagreements among the reviewers. It was decided that the articles would be selected on a minimum agreement of at least 50% between the two reviewers due to the complex and specialized field the review would entail. The second reviewer, however, resolved the discrepancies between the principal investigator and the third reviewer at the full-text screening phase. The PRISMA flow diagram was used to account for all the articles. The eligibility criteria used in this study are outlined below:

Inclusion criteria

  • Studies that involved unnatural deaths
  • Studies that focused on forensic medicine (autopsies/post-mortem)
  • Articles that reported data practices such as use, benefits, and challenges
  • Articles published from 2008 to 2021
  • Articles published in the English language
  • All study designs

Exclusion criteria

  • Articles that do not involve forensic medicine, pathology, and/or autopsies
  • Studies with no clear targeted population
  • Studies where full-text articles could not be obtained
  • Articles reporting photo capture/imaging programs
  • Non-English publications

Charting the data

The data for this study were collected using a spreadsheet comprising of the following: bibliographic details, publication year, study design, study setting, data practices relating to forensic medicine, uses, benefits, challenges, and conclusion and recommendations. The form was pilot tested by two reviewers independently, and all discrepancies were resolved before its usage. Finally, two reviewers performed the data extraction using both inductive and deductive approaches. Subsequent discrepancies were resolved through discussion by the review team.

Collating, summarizing, and reporting the results

Thematic content analysis was conducted for this study. The emerging themes and subthemes relating to data practices in forensic medicine were collated, summarized, and reported narratively. However, the bibliographic details of the included studies, such as design and publication year, were reported quantitatively and presented as percentages.

Results

References

Notes

This presentation is faithful to the original, with only a few minor changes to presentation, grammar, and punctuation. In some cases important information was missing from the references, and that information was added. The original article lists references in alphabetical order; this version lists them in order of appearance, by design.