User:Shawndouglas/sandbox/sublevel6

From LIMSWiki
< User:Shawndouglas‎ | sandbox
Revision as of 23:59, 1 June 2017 by Shawndouglas (talk | contribs) (→‎Cosmetic: Saving and adding more)
Jump to navigationJump to search

A framework for the laboratories in our lives

Below (Fig. 1) is a diagrammatic expression of one method of organizing laboratories of the world. The idea behind the framework is that you could name a specific laboratory and be able to put it somewhere within the framework. For example:

  • The U.S. Federal Bureau of Investigation's mobile forensics laboratory[1] would fall under Government > Public > Compliance and Legal > Wet (or Dry) > Mobile.
  • An engineering design laboratory based within a for-profit car manufacturing company would fall under Private > Internal Customer > Research / Design > Dry > Fixed.
  • A chemistry laboratory housed in a secondary school in Germany would fall under Academic > Teaching > Secondary > Wet > Fixed.


Laboratory types diagram.png

Figure 1. A diagrammatic representation of laboratory types using both client type and function as the key organizational elements


The original inspiration for this diagram came from Jain and Rao's attempt to diagram Indian diagnostic laboratories in 2015.[2] While their diagram focused entirely on the clinical sphere of laboratories, it was easy to envision expanding upon their work to express laboratories of all types. Additional inspiration came from KlingStubbins architecture textbook Sustainable Design of Research Laboratories: Planning, Design, and Operation[3], which lists several methods for organizing types of laboratories; Daniel D. Watch's Building Type Basics for Research Laboratories[4]; and Walter Hain's Laboratories: A Briefing and Design Guide.[5]

The benefit of this diagrammatic approach — with client type at its base — becomes more apparent when we start considering the other two methods we could use to categorize laboratories, as described by KlingStubbins et al.: by science and by function. Organizing by science quickly becomes problematic, emphasizes KlingStubbins[3]:

Gone are the days when the division was as simple as biology and chemistry. New science fields emerge rapidly now and the lines between the sciences are blurred. A list based on science types would include not just biology and chemistry, but biochemistry, biophysics, electronics, electrophysiology, genetics, metrology, nanotechnology, pharmacokinetics, pharmacology, physics, and so on.

As for function, we can look at what type of activity is primary to the lab. Is it designed to teach students, function as a base for research, provide quality control functions, calibrate equipment, or act as a routine analytical station? Another benefit of looking at labs by function is it helps with our organization of labs within industry (discussed in the next section) by what they do. For example, we don't have a "manufacturing lab"; rather, we have a laboratory in a manufacturing company — perhaps making cosmetics — that serves a particular function, whether its quality control or research and development. This line of thinking has utility, but upon closer inspection, we discover that we need to look further up the chain at who's running it.

As such, we realize these functions can be integrated with client type to provide a more complete framework. Why? When we look at laboratories by science type — particularly when inspecting newer fields of science — we realize 1. they are often interdisciplinary (e.g., molecular diagnostics integrating molecular biology with clinical chemistry) and 2. they can serve two different functions within the same science (e.g., a diagnostic cytopathology lab vs. a teaching cytopathology lab). Rather than build a massively complex chart of science types, with numerous intersections and tangled webs, it seems more straightforward to look at laboratories by client type and then function, following from the architectural viewpoints presented by KlingStubbins et al.

However, this doesn't mean looking at laboratories by science is entirely fruitless. But rather than focus directly on the sciences, why not look at the industries employing laboratory science? While there is crossover between industries (e.g., the cosmetic and petrochemical industries both lean on various chemical sciences), we can extend from the previous diagram (or work in parallel with it) and paint a broader picture of just how prevalent laboratories are in our life.

In the next section, we look at the private, government, and academic labs in various industries; provide real-life examples; and discuss the various subdivisions (functions) and sciences performed in them.

Labs by industry

Note: This is not a thorough listing of industry categories. More will be added when necessary.

Agriculture and forestry

Unload wheat by the combine Claas Lexion 584.jpg

Laboratories within the agriculture and forestry field are focused on analyzing, improving, and ensuring the safety of the various plants, animals, and fungi that are cultivated or bred to sustain and enhance human life. These labs are found in the private, government, and academic sectors and provide many different services, including:

  • analysis and assessment of seeds and soils[6]
  • analysis and assessment of fertilizers and pesticides[6]
  • studies of farm and field systems[6]
  • studies of plant and feedstock nutrition[7]
  • analysis and assessment of plant and tree fibers and chemicals[8]
  • tracking and analysis of plant and tree diseases[9]
  • tracking and analysis of invasive plants and insects[9]
  • risk assessment of genetically modified organisms (GMO) and microorganisms[10]
  • tracking and analysis of agricultural animal disease[11]

How do agriculture and forestry laboratories intersect the average person's life on a daily basis? The most obvious way these labs touch our lives on a daily basis is through the food and beverages we consume. Though we talk about the food and beverage industry and its laboratories separately in this guide, agriculture labs are at the forefront of humanity's push to provide greater, more efficient, healthy, and safe agricultural yields. Ag lab personnel work to better feed humans and animals alike, while also considering the environmental impact of research-based advances in fertilizers, pesticides, and GMOs. Without these laboratories in place, we would surely face an even more dire future of struggling to maintain crop yields in a world of increasing population and decreasing natural resources.[12]

Client types

Private - Agriculture labs in the private sector typically serve as third-party or contract laboratories to other entities conducting agricultural activities while unable or unwilling to invest in their own private laboratory. Aside from analytical services, these labs often include consulting services on plant nutrition, soil sciences, and water management.

Examples include:

Government - Government-run agriculture and forestry laboratories conduct specialized topical research, provide analytical services, and oversee federal, state, and local programs in the industry. From bee research to interstate milk shipping program service to compliance testing, these public or public-private labs may act as major research hubs or checkpoints of regulated testing.

Examples include:

Academic - Agriculture laboratories associated with higher education institutions are often of a hybrid client type and function. They may multi-purpose a laboratory for research, teaching, and analytical testing purposes. Many higher-education agriculture labs also process samples from external third-party clients, acting in some ways like a private analytical lab would. In some cases, non-profit and private entities partner with higher education (public-private) to provide research and training opportunities beneficial to both the entities and the students. (See for example the Cornell-affiliated non-profit Hudson Valley Research Laboratory.[13])

Examples include:

Functions

What are the most common functions? Analytical, research/design, QA/QC, and teaching

What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled? animal tissue, compost, feed and forage, fertilizers, insects, irrigation water, manure, pesticides, plant tissue, seeds, soil

What sciences are being applied in these labs? agroecology, agronomy, agrophysics, animal science, biological engineering, biology, biotechnology, chemistry, environmental science, food science, microbiology, nematology, soil science, water management

What are some examples of test types and equipment?

Common test types include:

Absorption, Acute contact, Acute oral, Acute toxicity, Allergy, Antimicrobial, Atterberg limits, Bioaccumulation, Biodegradation, Chronic toxicity, Composition, Conductivity, Consolidation, Contamination, Cytology, Density, Developmental and reproductive toxicology, Efficacy, Endocrine disruptor screening program, Environmental fate, Environmental metabolism, Expiration dating, Fluorescence, Formulation, Genotoxicity, GMO detection, Hydraulic conductivity, Impurity, Labeling, Metallurgical analysis, Minimum bactericidal concentration, Minimum inhibitory concentration, Mobility, Moisture, Mold - fungal - mycotoxin, Mutagenicity, Nutritional, Organic carbon, Oxidation reduction potential, Oxidation stability, Pathogen, Pathogenicity, PDCAAS, Permeability, pH, Phytosanitary, Plant metabolism, Proficiency, Purity, Radioactivity, Radiochemical, Sanitation, Sensory, Shelf life, Soil microflora, Solubility, Specific gravity, Subchronic toxicity, Terrestrial toxicology, Toxicokinetic, Vigor and germination, Water activity, Wildlife toxicology

Industry-specific lab equipment may include:

automated weather stations, colorimeters, conductivity analyzers, dry ovens, fat analyzers, incubators, moisture testers, nitrogen/oxygen analyzers, pH meters, porometers

What else, if anything, is unique about the labs in the agriculture industry? The food and beverage industry is closely linked. For example, the State of Pennsylvania's Department of Agriculture includes a food safety laboratory division.[14] However, for the purposes of this guide, food, beverages, and ingredients are separated out as its own industry. Even raw materials that can be consumed alone such as cow milk or apples require some processing and handling (e.g., cleaning and packaging). In other words, the agriculture industry is arguably worried about the research, development, growth, and safety of what goes into what the food and beverage industry provides. Agriculture labs also have obvious tie-ins to environmental laboratories, as agricultural activities impact the environment and vice versa. Ties to veterinary labs may seem evident, and in fact many universities lump veterinary science programs with agriculture programs. However, animal science as a scientific discipline is arguably more closely aligned with agriculture science, as animal science takes a broader approach to the production, care, nutrition, and processing of animal-based products.[15]

LIMSwiki resources


Automotive, aerospace, and marine

Delphi Automotive (6944417073).jpg

Laboratories in the automotive, aerospace, and maritime travel industry are focused on the design, development, and testing of components, materials, fluids, etc. that make up vehicles that operate on land, on sea, in air, and in outer space. These labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to):

  • analysis and assessment of chemicals and petrochemicals[16]
  • analysis and assessment of materials[17][18]
  • analysis and assessment of safety[17][18]
  • tracking and analysis of structural integrity[19]
  • design and analysis of lighting[20]
  • design and analysis of chassis[21]
  • design and analysis of fuel cells[22]
  • failure analysis[23]

How do automotive, aerospace, and marine laboratories intersect the average person's life on a daily basis? While much scientific effort has gone into the development of modern vehicles — a significant portion of it in some sort of laboratory — from the ergonomic shift knob and regenerative braking system to the quantum accelerometer[24] and solid rocket booster, the laboratory testing that goes into designing safer products and systems is the easiest for the layperson to relate to. From Volvo and Nils Bohlin's contribution of the three-point seat belt[25] to the continuing improvement of automotive and pedestrian impact safety standards[26], traditional and non-traditional laboratories alike are responsible for advances in keeping drivers, passengers, and pedestrians safer. Without these laboratories in place — and without the related efforts of pioneering automotive engineers developing and propagating tested standards in the 1910s[27] — the safety of vehicles arguably wouldn't be anything like what it is today. Secondarily, vehicle reliability and longevity would also suffer.

Client types

Private - Private laboratories in this industry are usually either associated directly with a vehicle manufacturer (e.g., Ford Motor Company, Boeing Company, Gulf Craft) or act as a third-party contract laboratory for manufacturers and designers who are unable or unwilling to invest in their own private laboratory. Aside from analytical services, these labs often include consulting services on design management and analysis as well as team and project management.

Examples include:

Government - Government-run transportation-related laboratories conduct specialized topical research, provide analytical services, and oversee federal, state, and local programs in the industry. From aircraft fatigue research to emissions testing to transportation system modelling, these public or public-private labs may act as major research hubs or checkpoints of regulated testing.

Examples include:

Academic - Automotive, aerospace, and maritime transportation laboratories associated with higher education institutions act as both teaching locations for new students and fundamental and applied research locations for more advanced students. That academic research may be funded by industry sources, by a government, or by a non-profit or foundation, and some academic laboratories may act as a public-private entity when a non-profit or private entity partners with the higher education institution.

Examples include:

Functions

What are the most common functions? Analytical, research/design, and QA/QC

What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled? combustion, emissions, fluid dynamics, lubricants, materials and components, paints and coatings, power conversion and control, propulsion and power generation, safety, structural mechanics, transportation system modeling

What sciences are being applied in these labs? biomechanics, chemical, electrical engineering, electronic engineering, environmental, ergonomics, materials science, mathematics, mechanical engineering, physics, safety engineering, software engineering

What are some examples of test types and equipment?

Common test types include:

Accelerated stress testing, Accelerated weathering, Acceleration, Acoustical, Adhesion, Aging, Altitude, Ash, Case depth, Characterization, Chemical and materials compatibility, Cleanliness, Climatics, Combustion, Comparative Tracking Index, Compliance/Conformance, Compression, Conductivity, Contact mechanics, Corrosion, Damage tolerance, Degredation, Design review and evaluation, Dielectric withstand, Dimensional, Discoloration, Dynamics, Efficiency, Electromagnetic compatibility, Electromagnetic interference, Electrostatic discharge, Emissions, Endurance, Environmental stress-cracking resistance, Ergonomics, Etching, Failure, Fatigue, Feasibility, Flammability, Flash point, Fluid dynamics, Friction, Functional testing, Hazard analysis, Heat resistance, Hydraulic, Immersion, Impact, Inclusion, Inflatability, Ingress, Iterative, Lightning, Lubricity, Macroetch, Mass, Mechanical, Mechanical durability, Oxidation reduction potential, Passivation, Performance, Permeability, pH, Photometric, Plating and coating evaluations, Proficiency, Qualification, Quality control, Reliability, Resistance - capacitance - inductance, Safety, Shear, Shock, Stress corrosion cracking, Surface topography, Tensile, Thermal, Torque, Ultraviolet, Usability, Velocity and flow, Vibration, Visibility, Voltage, Weathering

Industry-specific lab equipment may include:

battery load tester, carbon sulfur analyzer, circuit tester, colorimeter, compression tester, demonstration and simulation equipment, digital multimeter, gas analyzer, hardness tester, heat treatment furnace, salt spray chamber, temperature and humidity chamber, tension tester, thermal shock chamber

What else, if anything, is unique about the labs in the automotive, aerospace, and maritime travel industry? A September 2010 Brookings report stated that "innovation activity undertaken in the private sector of the auto industry extends far beyond the automaker itself, as nearly three-fourths of the value of a vehicle is added by companies other than the automaker."[28] Though the report doesn't directly mention who makes up those companies, presumably industry-focused R&D, QA, and compliance testing laboratories make up at least a small portion of them. As for intersections with other industries, the petrochemical, environmental, and energy industries are closely linked, providing insight and advances in combustion, emissions control, and alternative fuel sources to automobile, airplane, boat, and space vehicle designers and manufacturers.

LIMSwiki resources

  • None

Calibration and standards

Calibrate scale.JPG

Laboratories in the calibration and standards industry are focused on testing the accuracy of measurement devices and reference standards, correcting inaccuracies in measurement devices, and developing and using standards/reference equipment and devices for calibration testing. Broadly speaking, these laboratories will appear as stand-alone, accredited laboratories performing calibrations for customers on request; as in-house calibration laboratories found in production facilities testing their equipment against working standards tested by the third-party accredited lab; or in a university setting, which may or may not offer accredited third-party calibration services.[29] These labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to):

  • calibration of working or reference standards used in other calibration activities[30]
  • calibration of mechanical, electronic, and other instruments and components, in lab or onsite[29][30]
  • maintenance and repair of instruments
  • documentation of tests for regulatory or audit purposes
  • enact measurement assurance programs[31]

How do calibration and standards laboratories intersect the average person's life on a daily basis? Let's turn to an introductory section of Jay L. Bucher's The Quality Calibration Handbook to help visualize an answer to this question[32]:

Without calibration, or by using incorrect calibrations, all of us pay more at the gas station, for food weighed incorrectly at the checkout counter, and for speeding tickets. Incorrect amounts of ingredients in your prescription and over-the-counter (OTC) drugs can cost more, or even cause illness or death. Because of poor or incorrect calibration, killers and rapists are either not convicted or are released on bad evidence. Crime labs cannot identify the remains of victims or wrongly identify victims in the case of mass graves. Airliners fly into mountaintops and off the ends of runways because they don't know their altitude and/or speed. Babies are not correctly weighed at birth. The amount of drugs confiscated in a raid determines whether the offense is a misdemeanor or a felony; which weight is correct? ... Satellites and everything they affect would be a thing of the past, as would be the manufacturing and production of almost everything made in the world today.

Client types

Private - As previously mentioned, private industry labs are largely either in a production facility or act as a third-party contract laboratory for manufacturers who are unable or unwilling to invest in their own private calibration laboratory. Aside from making the calibration (comparison), these labs may also provide maintenance and repair services as well as compliance documentation.

Examples include:

Government - These government-affiliated labs are often at or near the top of the chain of calibration labs, working with others to link their equipment to national or even international measurement standards. They can be found not only at the federal level but also at the state/territory level and may even exist as public-private partnership.

Examples include:

Academic - Like agriculture labs, calibration and standards laboratories associated with higher education institutions are often of a hybrid client type and function. They may multi-purpose a laboratory for research, teaching, and professional calibration services, processing equipment and instruments from external third-party clients, acting in some ways like a private analytical lab would. Some university labs may have strong ties (through contracts or received funding) with commercial and government entities, leveraging university research and knowledge to those external parties to further fund university laboratory teaching efforts.

Examples include:

Functions

What are the most common functions? Calibration, research/design, QA/QC, teaching

What materials, technologies, and/or aspects are being calibrated, researched, and quality controlled? Electronics, measurement tools, mechanical devices, primary standards; chronometric, dimensional, hardness, photometric, sensitivity, thermal, volumetric

What sciences are being applied in these labs? applied statistics, engineering, metrology, physics

What are some examples of test types and equipment?

Common test types include:

Absorption, Acceleration, Acoustical, Compression, Dimensional, Grain and particle size, Humidity, Mass, Optical, Oxidation reduction potential, pH, Photometric, Power quality, Pressure, Proficiency, Reflectance, Resistance - capacitance - inductance, Temperature, Tensile, Torque, Validation, Velocity and flow,

Industry-specific lab equipment may include:

benchtop precision meters, calibration mass sets, dry block probe calibrators, heated calibration bath, infrared calibrator, milliamp loop calibrator, multifunction calibrator, pressure calibrator, stage micrometer, standard resistors, standard capacitors, standard inductors, surface probe tester, thermocouple calibrator, torque reference transducer

What else, if anything, is unique about the labs in the calibration industry? Calibration laboratories, whether located in a manufacturing facility or as a stand-alone third-party facility, have special placement and environmental requirements that must be met to ensure optimal operations. This includes maintaining a strict range of relative humidity; maintaining temperature stability and uniformity; and managing air flow, vibration, and dust issues properly.[30] Many calibration labs found in higher education facilities seem to be multipurpose, capable of handling not only teaching and research functions but also able to provide independent calibration services to external customers, public and private. In the U.S. at least, the government is engaged in several public-private ventures involving calibration and standards laboratories.

LIMSwiki resources


Chemical

Chemistry lab of HTG.jpg

Broadly speaking, laboratories in the chemical industry are focused on testing the properties and constituents of chemicals, bodily fluids, and other organic/inorganic materials. More narrowly, while such testing may be the sole function of a chemical laboratory (perhaps as a contract laboratory), it may also function as part of a manufacturer's greater research and development effort, a clinical facility's quality control program, a government's public safety program, or an agriculture company's environmental research division. In all these cases the work falls under the general concepts of either pure chemistry (research simply for the sake of knowledge) or applied chemistry (activities towards a short term goal, as part of a company or institution).[33] These labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to):

  • analysis and assessment of what and how much is in a substance[33]
  • analysis and assessment of the physical properties of a substance[33]
  • creation and synthesis of new substances[33]
  • development of chemical models, theories, and test methods[33][34]
  • quality testing and assurance[34]

How do chemical laboratories intersect the average person's life on a daily basis? To answer this question, it's best to first point out that matter = chemicals. Matter has mass and occupies space, and it is made of chemicals. Or as the The University of Waikato in New Zealand puts it, matter is constructed from atoms, and "if atoms are LEGO blocks, chemicals are the structures you can build with them."[35] Therefore, chemistry is about the study of matter, it's properties, and how it changes by external forces.[36] Laboratories performing chemistry activities are, by extension, pivotal to most every aspect of our life. From pharmaceuticals to food, paint to drinking water, a chemistry lab is behind the scenes, with people dedicate to improving our lives.

Client types

Private - The chemical labs of private companies can be found in many professional spaces and contexts. They may appear as part of manufacturing, R&D, and contract lab contexts, located within a facility or as a stand-alone facility. Aside from any of the above mentioned activities, a private lab may also provide consulting services.

Examples include:

Government - Government-based chemical labs are often part of a regulatory process or provide research that guides regulation development. They may provide mandated laboratory testing of materials for toxic chemicals or material research studies for the improvement of highway construction materials, for example.

Examples include:

Academic - A majority of chemical labs in the academic environment are traditional, in that they act as both teaching spaces and a place for faculty research.

Examples include:

Functions

What are the most common functions? Analytical, research/design, QA/QC, and teaching

What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled? biological materials, ceramics, dyes and pigments, fragrances, glass, inorganics, lubricants, manufactured materials, metals, petrochemicals, polymers, raw chemicals

What sciences are being applied in these labs? analytical chemistry, biochemistry, inorganic chemistry, organic chemistry, physical chemistry, theoretical chemistry

What are some examples of test types and equipment?

Common test types include:

Absorption, Acid and base number, Acute contact, Acute oral, Acute toxicity, Adhesion, Amino acid analysis, Anion, Antimicrobial, Ash, Biomolecular, Biosafety, Boiling - freezing - melting point, Carcinogenicity, Characterization, Chemical and materials compatibility, Chronic toxicity, Colorimetric, Combustion, Compliance/Conformance, Conductivity, Composition, Congealing point, Contamination, Corrosion, Decomposition, Density, Developmental and reproductive toxicology, Efficacy, Endocrine disruptor screening program, Environmental fate, Environmental metabolism, Flammability, Flash point, Fluid dynamics, Formulation, Geochemistry, Hazard analysis, Impact, Iodine value, Metallurgical analysis, Minimum bactericidal concentration, Minimum inhibitory concentration, Moisture, Neurotoxicity, Oxidation reduction potential, Oxidation stability, pH, Polarimetry, Process safety, Proficiency, Quality control, Sensitization, Shelf life, Solubility, Stability, Subchronic toxicity, Thermal, Toxicokinetic, Vapor pressure, Virucidal efficacy, Viscosity

Industry-specific lab equipment may include:

balance, Bunsen burner, burette, colorimeter, centrifuge, chromatographic, crucible, desiccator, dropper, electrophoresis equipment, Erlenmeyer flask, Florence flask, fume hood, funnel, graduated cylinder, hot plate, moisture analyzer, mortar and pestle, multi-well plate, oven, pH meter, pipestem triangle, reagent dispenser, ring stand, rotary evaporator, spectrometer, spectrophotometer, stirring rod, thermometer, vibratory disc mill, viscometer

What else, if anything, is unique about the labs in the chemical industry? It's important to note that by itself, chemistry as a branch of science — and as a science that deals with the study of matter itself — is a central science, one that bridges multiple other sciences.[37] As such, we see significant crossover into the many of the other industries listed in this guide; clinical chemistry ties to the world of clinical analysis (clinical and veterinarian), medicinal chemistry to the pharmaceutical industry, and chemurgy to the agriculture industry.

LIMSwiki resources


Clinical, public and private

Pathology Lab.png

To talk of clinical (serving the patient) and public health (serving the population) laboratories requires a broad look at those laboratories that serve in the direct analysis, treatment, and prevention of illness. From large third-party reference laboratories like Quest Diagnostics that handle laboratory analysis of patient samples for doctors to the tiny physician office laboratory performing CLIA-waived tests, from the hospital lab to a state's public health lab, from the mobile diabetes testing unit to the national disease prevention lab, it's difficult not to bump into a clinical or public health lab of some sort. These labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to):

Clinical

  • diagnostic analysis of patient samples[38]
  • identification of infectious agents[38]
  • assurance of the quality of blood for transfusions[38]
  • analysis, management, and storage of reproductive tissues and fluids[38]
  • provision of basic point-of-care testing[38]
  • screening or testing of employees for drugs of abuse[38]

Public health

  • prevention, control, and surveillance of diseases[39]
  • collection, monitoring, and analysis of laboratory data submitted to national databases[39]
  • analysis and specialized testing of patient samples[39]
  • detection and analysis of toxic contaminants in environmental and food samples[39]
  • develop and promote laboratory improvement programs as well as state and federal policy[39]

How do clinical and public health laboratories intersect the average person's life on a daily basis? As the debate about whether healthcare access should be universal[40] or is a human right[41] wages on, many people still receive medical care but some do not. While it's bad for the "have nots," can you imagine a different world, one where it's not a fight for the have nots but a fight for most everyone to survive? Try, if you will, to imagine a universe where laboratory medicine never existed. Without laboratorians diagnosing and researching, today's healthy population would be significantly smaller. Clinical and public laboratories have brought us advances in antibiotics, which without many more people would die from surgical site infections post-surgery.[42] These laboratories have helped bring medical diagnostics to more people more conveniently and efficiently, and they are at the forefront of most people's health care.[43]

Client types

Private - Private clinical (or sometimes referred to as reference) labs usually appear in either stand-alone facilities that outpatients go to or in a medical facility such as a physicians group, hospital, or some other form of care facility. Occasionally, you may find private clinical labs in manufacturing facilities to handle mandated drug testing or even in a mobile environment.

Examples include:

Government - You'll find public health labs almost exclusively on the government side, managing disease outbreaks, monitoring public health, and acting as a third-party analysis option for clinical labs struggling to identify or characterize a sample.

Examples include:

Academic - The laboratories found in the academic sphere are often multi-purpose, serving as teaching facilities for students while at the same time providing vital in-house testing to the academic facility's affiliated medical center. However, some may be stand-alone teaching labs designed to provide hands-on education in a lab outside a medical facility.

Examples include:

Functions

What are the most common functions? Analytical, research/design, QA/QC, and teaching

What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled? Biological specimens, cadavers

What sciences are being applied in these labs? clinical chemistry, clinical microbiology, cytopathology, genetics, hematology, histopathology, immunohematology, immunology, parasitology, pathophysiology, reproductive biology, surgical pathology, toxicology, virology

What are some examples of test types and equipment?

Common test types include:

Absorption, Alcohol level, Allergy, Amino acid analysis, Antimicrobial, Antigen, Bioaccumulation, Blood culture, Blood gases, Biocompatibility, Biomolecular, Biophysical profile, Blood typing, Calorimetry, Clinical diagnostic, Chronic toxicity, Colorimetric, Complete blood count, Compliance/Conformance, Composition, Cytopathology, Detection, Dietary exposure, Efficiency, Electrolyte and mineral panel, Electrophoresis, Endurance, Genetic, Genotype, Hematotoxicity, Hematocrit, Hemoglobin, Identification, Immunoassay, Immunofluorescence, Immunohistochemistry, Kidney function, Infectious disease, Lipid profile, Liver function, Medical toxicology, Metabolic, Mold - fungal - mycotoxin, Neurotoxicity, Nutritional, Osmolality, Osmolarity, Pathogen, pH, Proficiency, Radiochemical, Red blood cell count, Refractive index, Sensitization, Solubility, Specific gravity, Sports performance, Stress, Subchronic toxicity, Temperature, Thermal, Thyroid function, Urine culture, Validation, Verification

Industry-specific lab equipment may include:

autoclave, balance, biohazard container, biosafety cabinet, centrifuge, chromatographic, clinical chemistry analyzer, colorimeter, desiccator, dissolved oxygen meter, dry bath, fume hood, homogenizer, hotplate, incubator, magnetic stirrer, microcentrifuge tube, microplate reader, microscope, multi-well plate, orbital shaker, PCR machine, personal protective equipment, pH meter, Petri dish, pipettor, powered air purifying respirators, refractometer, spectrophotometer, syringes, test tube and rack, thermometer, urinalysis device, water bath

What else, if anything, is unique about the labs in the clinical and public health industry? At least in the United States, clinical labs are some of the most prevalent labs in the country; as of January 2017 there was approximately one CLIA-regulated clinical laboratory for every 1,271 people.[44][45] While many of the diagnostic techniques and laboratory instruments specific to clinical diagnostic laboratories can also be found in the clinical research setting, clinical research labs tend to be a somewhat different beast. As such, we cover clinical research labs separately, in the next section.

LIMSwiki resources

Clinical

Public health


Clinical and academic research

Clinical research laboratories provide a regulated environment for the testing of the safety and efficacy of a variety of medical treatments and diagnostic devices, including medications, implants, and physician test kits. These facilities form the backbone of today's effective medical treatments, from cholesterol-lowering medications to pacemakers for the heart. In the U.S., these types of labs are overseen by the Food and Drug Administration, unlike the previously mentioned clinical and public health laboratories. Clinical research labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to):

  • clinical studies[46]
  • bioequivalence studies[46]
  • study design and management
  • custom assay development
  • high-volume specimen testing
  • test kit development and supply

Clinical studies and trials aside, other types of research may require laboratory services as well. (For the purposes of this guide, we refer to it as "academic research," a broad catch-all category for other research involving laboratories that doesn't readily fit into other industry categories.) Take for example the archeology laboratory, which is responsible for cleaning, analyzing, and identifying artifacts and remains from various sites either as part of a greater research effort or as a contract laboratory service.[47][48] Research in information technology and communication also occurs in (dry) laboratories; examples include the privately owned Nokia Bell Laboratory[49] and the university-affiliated University of New Hampshire InterOperability Laboratory.[50]

How do clinical and academic research laboratories intersect the average person's life on a daily basis? If you've had a medical device implanted, taken a prescription medication, visited an archeological exhibit in a museum, or experienced improvements in how you communicate with others, then you've been touched by a clinical or academic research laboratory. Without these facilities we'd have fewer medications and assistive devices, and by extension shorter life spans. We'd know less about humanity's past growth and development, and we'd lack the technology to rapidly disseminate those findings around the globe.

Client types

Private - Private clinical research labs are most often "central laboratories" (see the end of this section for more on this term) that are contracted by pharmaceutical companies and medical device manufacturers.

Examples include:

Government - These labs are typically set up by a government agency to perform specific research into medical conditions such as cancer, depression, or HIV infection.

Examples include:

Academic - Many academic institutions set up their own clinical research activities, often within an affiliated medical center. These research efforts often serve as training grounds for students to learn more about clinical research and its administration.

Examples include:

Functions

What are the most common functions? Research, clinical studies, contract lab work

What materials, technologies, and/or aspects are being analyzed and researched? artifacts, biological specimens, communication networks, medical devices, etc. (depending on academic discipline practiced in the lab)

What sciences are being applied in these labs? archeology, clinical research, information theory, etc. (depending on academic discipline practiced in the lab)

What are some examples of test types and equipment?

Common test types include:

Absorption, Acoustic startle, Acute contact, Acute oral, Acute toxicity, Adhesion, Age determination, Amino acid analysis, Angle of repose, Antimicrobial, Antigen, Behavioral, Blood culture, Blood gases, Bioavailability, Bioburden, Biocompatibility, Bioequivalence, Biomechanical, Biomolecular, Biosafety, Calorimetry, Carcinogenicity, Clinical diagnostic, Colorimetric, Compaction, Compendial, Complete blood count, Cytology, Cytopathology, Cytotoxicity, Detection, Developmental and reproductive toxicology, Dietary exposure, Ecotoxicology, Efficacy, Electrolyte and mineral panel, Electromagnetic compatibility, Electromagnetic interference, Electrophoresis, Endocrine disruptor screening program, Endotoxin, Environmental fate, Environmental metabolism, Extractables and leachables, Feasibility, Fluid dynamics, Functional observational battery, Genetic, Genotoxicity, Hematocrit, Hemoglobin, Hematotoxicity, Human factors, Immunohistochemistry, Impact, Impurity, Inhalation, Irritation, Kidney function, Learning and memory, Lipid profile, Liver function, Locomotor activity, Metabolic, Microfluidics, Minimum bactericidal concentration, Minimum inhibitory concentration, Nanoparticulate, Neurotoxicity, Nutritional, Osmolality, Osmolarity, Oxidation reduction potential, Oxidation stability, Parasitic, Pathogen, Pathogenicity, pH, Pharmacokinetic, Phototoxicity, Protein analysis, Protein characterization, Red blood cell count, Refractive index, Sensitization, Solubility, Specific gravity, Thyroid function, Toxicokinetic, Urine culture, Validation, Verification, Virucidal efficacy, Wildlife toxicology

Industry-specific lab equipment may include:

autoclave, balance, biohazard container, biosafety cabinet, centrifuge, chromatographic, clinical chemistry analyzer, colorimeter, desiccator, dissolved oxygen meter, dry bath, electrophoresis system, ELISA plate reader, fluorometer, freezers, fume hood, genetic analyzer and sequencer, homogenizer, hotplate, incubator, magnetic stirrer, mass spectrometry equipment, microcentrifuge tube, microplate reader, microscope, multi-well plate, orbital shaker, PCR machine, personal protective equipment, pH meter, Petri dish, pipettor, powered air purifying respirators, refractometer, spectrophotometer, syringes, test tube and rack, thermal cycler, thermometer, urinalysis device, water bath

What else, if anything, is unique about the labs in the clinical and academic research fields? It's important to note that some clinical research laboratories may be referred to as "central laboratories." Though mentioned occasionally in its regulation and guidance, the U.S. Food and Drug Administration doesn't seem to provide a definition of the term. However, it seems to be used by some in the context of an analytical laboratory that provides analyses of biological specimens associated with clinical and bioequivalence studies (including multi-site studies, prompting the idea of a "central" lab handling sample analysis) performed at medical institutions.[46][51]

LIMSwiki resources


Cosmetic

Cosmetics-1078712 1280.jpg

Cosmetic labs provide research and development as well as quality control functions to the world of cosmetics. From makeups and moisturizers to hair dyes and lipsticks, the cosmetic laboratory is responsible for making safe and effective products of many types. Cosmetic chemists tend to mostly work in private laboratories or as part of a private-public research partnership, though some work in academic labs.[52] Cosmetic labs are found largely in the private sector, though they exist in the government and academic sectors and provide many different services, including (but not limited to):

  • formulation and development of products[52]
  • safety testing of products[52]
  • process engineering improvement[52]
  • chemical and material research[52]
  • substantiation of compatibility and efficacy claims[53]
  • allergy testing
  • contaminate testing

How do cosmetic laboratories intersect the average person's life on a daily basis? In private industry, cosmetic scientists are tasked with creating a safe product free from contaminates and allergens that may negatively affect a user. At the higher government level, some labs are responsible for substantiating manufacturer claims, testing cosmetics, and even manufacturing cosmetic components[53]; the U.S. Food and Drug Administration (FDA), for example, certifies some color additives as safe for consumers in its own lab.[54] Without these labs, the soaps, shampoos, moisturizers, and makeup on the market wouldn't likely exist, or they did, they would be of unknown quality, posing a threat to human health. When we use such a product, we are reminded that a laboratory was at some point involved in its creation.

Client types

Private -

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What materials, technologies, and/or aspects are being calibrated, researched, and quality controlled? emulsions, polymers, surfactants

What sciences are being applied in these labs? biochemistry, biology, chemical engineering, chemistry, cosmetic science, macromolecular science, pharmaceutical science, process engineering

What are some examples of test types and equipment?

Common test types include:

Absorption, Allergy, Antimicrobial, Bioburden, Biocompatibility, Comparison, Compliance/Conformance, Composition, Contamination, Detection, Efficacy, Expiration dating, Flammability, Fluorescence, Formulation, Fragrance, Impurity, Ingredient, Irritation, Labeling, Oxidation reduction potential, Oxidation stability, Pathogen, Performance, pH, Photostability, Preservative challenge, Proficiency, Purity, Pyrogenicity, Quality control, Safety, Sensitization, Stability, Water activity

Industry-specific lab equipment may include:

autoclave, balance, chromatographic, digital imaging devices, ESR spectroscopy equipment, fluorescent laser scan microscope, Fourier transform infrared spectroscopy equipment, microscope, multiphotone tomography equipment, pH meter, Raman spectroscopy equipment, test tube and rack, thermometer, transepidermal water loss (TEWL) instrumentation

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Energy

Pomiary rezystancji uzwojenia transformatora z rdzeniem amorficznym miernikiem Sonel MMR-6000.jpg

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Environmental

K4641-1rootscientists.jpg

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Food and beverage

Laboratório de Tecnologia de Alimentos.jpg

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Geology and mining

Mining near the city of Tomsk in Russia.jpg

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Law enforcement and forensics

Day 253 - West Midlands Police - Forensic Science Lab (7969822920).jpg

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Life sciences and biotechnology

PAPRs in use 01.jpg

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources

Life sciences

Bioinformatics


Logistics

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Manufacturing and R&D

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Nanotechnology

Two microgrippers.jpg

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Petrochemical

TASNEE 001.jpg

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Pharmaceutical

Generic Propecia.jpg

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Power and utility

Iwachishi-51-r1.JPG

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


Veterinary

Iranian cat in clinic.jpg

Insert broad information about the industry here.

Client types

Private - Insert applicable text here.

Examples include:

Government - Insert applicable text here.

Examples include:

Academic -

Examples include:

Functions

What are the most common functions? Insert text here

What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here

What sciences are being applied in these labs? Insert text here

What are some examples of test types, terminology, and equipment? Insert text here

What else, if anything, is unique about the labs in the clinical research industry? Insert text here

LIMSwiki resources


References

  1. Stephens, B. (4 March 2015). "Inside look at FBI's new mobile forensics lab". KCTV5 News. Gannaway Web Holdings, LLC. http://www.kctv5.com/story/28266161/inside-look-at-fbis-new-mobile-forensics-lab. Retrieved 29 March 2017. 
  2. Jain, R.; Rao, B. (2015). "Medical diagnostic laboratories provisioning of services in India". CHRISMED Journal of Health and Research 2 (1): 19–31. doi:10.4103/2348-3334.149340. 
  3. 3.0 3.1 KlingStubbins (2010). Sustainable Design of Research Laboratories: Planning, Design, and Operation. John Wiley & Sons. pp. 17–18. ISBN 9780470915967. https://books.google.com/books?id=yZQhTvvVD7sC&pg=PA18. Retrieved 29 March 2017. 
  4. Watch, D.D. (2001). "Chapter 2: Laboratory Types". Building Type Basics for Research Laboratories. John Wiley & Sons. pp. 37–99. ISBN 9780471217572. https://books.google.com/books?id=_EGpDgUNppIC&pg=PA37. Retrieved 29 March 2017. 
  5. Hain, W. (2003). Laboratories: A Briefing and Design Guide. Taylor & Francis. pp. 2–5. ISBN 9781135822941. https://books.google.com/books?id=HPB4AgAAQBAJ&pg=PA2. Retrieved 29 March 2017. 
  6. 6.0 6.1 6.2 Gliessman, S.R. (2007). Field and Laboratory Investigations in Agroecology. CRC Press. pp. 302. ISBN 9780849328466. https://books.google.com/books?id=pENYREeyGHoC&printsec=frontcover. 
  7. Askey, K. (7 December 2016). "Feedstocks - Increasing nutrition". Oak Ridge National Laboratory. U.S. Department of Energy, Office of Science. https://www.ornl.gov/news/feedstocks-increasing-nutrition. Retrieved 21 May 2017. 
  8. "Research Unit: Fiber and Chemical Sciences Research". Forest Products Laboratory. U.S. Forest Service. https://www.fpl.fs.fed.us/research/units/4709.php. Retrieved 21 May 2017. 
  9. 9.0 9.1 "Forest Health & Conditions". USDA Forest Service Southern Research Station. U.S. Forest Service. https://www.srs.fs.usda.gov/research/forest-health/. Retrieved 21 May 2017. 
  10. U.S. Congress, Office of Technology Assessment (August 1992). "Chapter 8: Scientific Issues: Risk Assessment and Risk Management". A New Technological Era for American Agriculture. U.S. Government Printing Office. pp. 225–256. ISBN 9780160379784. https://www.princeton.edu/~ota/disk1/1992/9201/9201.PDF. 
  11. National Academies Press (2012). Meeting Critical Laboratory Needs for Animal Agriculture: Examination of Three Options. National Academy of Science. pp. 144. ISBN 9780309261296. https://www.nap.edu/catalog/13454/meeting-critical-laboratory-needs-for-animal-agriculture-examination-of-three. 
  12. Singh, R.B. (2012). "Chapter 1: Climate Change and Food Security". In Tuteja, N.; Gill, S.S.; Tuteja, R.. Improving Crop Productivity in Sustainable Agriculture. John Wiley & Sons. pp. 1–22. ISBN 9783527665198. https://books.google.com/books?id=vtPmQIEXZVcC&pg=PT31. 
  13. "Hudson Valley Research Laboratory". Hudson Valley Research Lab, Inc. 2017. http://www.hudsonvalleyresearchlab.org/. Retrieved 29 March 2017. 
  14. "Food Safety Laboratory Division". Pennsylvania Department of Agriculture. 2017. http://www.agriculture.pa.gov/Protect/FoodSafety/Laboratory/Pages/default.aspx. Retrieved 29 March 2017. 
  15. Flanders, F. (2011). Exploring Animal Science. Cengage Learning. pp. 38–39. ISBN 9781435439528. https://books.google.com/books?id=WT1Ws2o3keYC&pg=PA38. 
  16. Phlegm, H.K. (2009). The Role of the Chemist in Automotive Design. CRC Press. pp. 216. ISBN 9781420071894. https://books.google.com/books?id=tRzfAwbzbNMC&printsec=frontcover. 
  17. 17.0 17.1 Elmarakbi, A., ed. (2013). Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness. John Wiley & Sons. pp. 472. ISBN 9781118535264. https://books.google.com/books?id=wfxQAQAAQBAJ&printsec=frontcover. 
  18. 18.0 18.1 Davies, G. (2012). Materials for Automobile Bodies. Elsevier. pp. 416. ISBN 9780080969800. https://books.google.com/books?id=_fZsIeCavO8C&printsec=frontcover. 
  19. Staszewski, W.; Boller, C.; Tomlinson, G.R., ed. (2004). Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing. John Wiley & Sons. pp. 288. ISBN 9780470092835. https://books.google.com/books?id=nzSPVBZ_Yg0C&printsec=frontcover. 
  20. Wördenweber, B.; Wallaschek, J.; Boyce, P.; Hoffman, D.D. (2007). Automotive Lighting and Human Vision. Springer Science & Business Media. pp. 410. ISBN 9783540366973. https://books.google.com/books?id=yatUXs8QQAMC&printsec=frontcover. 
  21. Reimpell, J.; Stoll, H.; Betzler, J., ed. (2001). The Automotive Chassis: Engineering Principles. Butterworth-Heinemann. pp. 456. ISBN 9780080527734. https://books.google.com/books?id=fuXf3wmahM8C&printsec=frontcover. 
  22. Kocha, S.S. (2012). "Chapter 15: Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications". In Kreuer, K.-D.. Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology. Springer Science & Business Media. pp. 473–518. ISBN 9781461457855. https://books.google.com/books?id=LE99dRxwtVcC&pg=PA473. 
  23. Reddy, A.V. (2004). Investigation of Aeronautical and Engineering Component Failures. CRC Press. pp. 368. ISBN 9780203492093. https://books.google.com/books?id=WkXRBQAAQBAJ&printsec=frontcover. 
  24. Marks, P. (14 May 2014). "Quantum positioning system steps in when GPS fails". New Scientist. New Scientist Ltd. https://www.newscientist.com/article/mg22229694-000-quantum-positioning-system-steps-in-when-gps-fails/. Retrieved 24 May 2017. 
  25. "Three-point seatbelt inventor Nils Bohlin born". History.com. A+E Networks. 2010. http://www.history.com/this-day-in-history/three-point-seatbelt-inventor-nils-bohlin-born. Retrieved 24 May 2017. 
  26. Atiyeh, C. (9 December 2015). "NHTSA Overhauling Crash Tests for 2019 Model Year Cars". Car and Driver. Hearst Communications, Inc. http://blog.caranddriver.com/nhtsa-overhauling-crash-tests-for-2019-model-year-cars/. Retrieved 24 May 2017. 
  27. Thompson, G.V. (1954). "Intercompany Technical Standardization in the Early American Automobile Industry". The Journal of Economic History 14 (1): 1–20. http://www.jstor.org/stable/2115223. 
  28. Klier, T.; Sands, C. (September 2010). "The Federal Role in Supporting Auto Sector Innovation" (PDF). Metropolitan Policy Program. Brookings Institution. https://www.brookings.edu/wp-content/uploads/2016/07/0927_great_lakes_auto.pdf. Retrieved 24 May 2017. 
  29. 29.0 29.1 Czichos, H.; Saito, T.; Smith, L.E., ed. (2011). "Chapter 3: Quality in Measurement and Testing". Springer Handbook of Metrology and Testing. Springer Science & Business Media. pp. 45–49. ISBN 9783642166419. https://books.google.com/books?id=fpTE1Z5UfsQC&pg=PA47. 
  30. 30.0 30.1 30.2 Bucher, J.L. (2007). "Chapter 12: Calibration Environment". The Quality Calibration Handbook: Developing and Managing a Calibration Program. ASQ Quality Press. pp. 113–116. ISBN 9780873897044. https://books.google.com/books?id=j7z9QaYFhrUC&pg=PA3. 
  31. "Policies". National Institute of Standards and Technology. 25 August 2016. https://www.nist.gov/calibrations/policies. Retrieved 24 May 2017. 
  32. Bucher, J.L. (2007). "Chapter 1: Preventing the Next Great Train Wreck". The Quality Calibration Handbook: Developing and Managing a Calibration Program. ASQ Quality Press. pp. 3–8. ISBN 9780873897044. https://books.google.com/books?id=j7z9QaYFhrUC&pg=PA3. 
  33. 33.0 33.1 33.2 33.3 33.4 "What Chemists Do and Where They Work". Dummies.com. Wiley. http://www.dummies.com/education/science/chemistry/what-chemists-do-and-where-they-work/. Retrieved 26 May 2017. 
  34. 34.0 34.1 "Chemistry Laboratory". Federal Highway Administration Research and Technology. Federal Highway Administration. 27 January 2017. https://www.fhwa.dot.gov/research/tfhrc/labs/materialscomplex/chemistry/. Retrieved 26 May 2017. 
  35. "Chemicals everywhere". Science Learning Hub. University of Waikato. 4 September 2012. 
  36. "Chemistry if Everywhere". American Chemical Society. https://www.acs.org/content/acs/en/education/whatischemistry/everywhere.html. Retrieved 26 May 2017. 
  37. Brown, T.L.; LeMay Jr., H.E.; Bursten, B.E. et al. (2013). Chemistry: The Central Science. Pearson Australia. pp. 1359. ISBN 9781442559462. https://books.google.com/books?id=zSziBAAAQBAJ&printsec=frontcover. 
  38. 38.0 38.1 38.2 38.3 38.4 38.5 Douglas, S. (5 July 2014). "02. Types of Clinical Labs". Introduction to Clinical Laboratory Informatics – LII 006. Laboratory Informatics Institute, Inc. https://www.limsforum.com/lessons/02-types-of-clinical-labs/. Retrieved 26 May 2017. 
  39. 39.0 39.1 39.2 39.3 39.4 Witt-Kushner, J.; Astles, J.R.; Ridderhof, J.C. et al. (20 September 2002). "Core Functions and Capabilities of State Public Health Laboratories". Morbidity and Mortality Weekly Report 51 (RR14): 1–8. http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5114a1.htm. Retrieved 11 September 2013. 
  40. Evans, D.B.; Hsu, J.; Boerma, T. (2013). "Universal health coverage and universal access". Bulletin of the World Health Organization 91: 546–546A. doi:10.2471/BLT.13.125450. 
  41. "Is Healthcare A Right?". PBS Newshour Extra: Student Voices. NewsHour Productions LLC. 30 September 2013. http://www.pbs.org/newshour/extra/student_voices/debating-health-care-right-america/. Retrieved 26 May 2017. 
  42. Dall, C. (3 November 2016). "WHO guidance says no routine post-surgery antibiotics". CIDRAP. Regents of the University of Minnesota. http://www.cidrap.umn.edu/news-perspective/2016/11/who-guidance-says-no-routine-post-surgery-antibiotics. Retrieved 31 May 2017. 
  43. Shirts, B.H.; Jackson, B.R.; Baird, G.S. et al. (2015). "Clinical laboratory analytics: Challenges and promise for an emerging discipline". Journal of Pathology Informatics 6: 9. doi:10.4103/2153-3539.151919. PMC PMC4355825. PMID 25774320. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355825. 
  44. Centers for Medicare and Medicaid Services, Division of Laboratory Services (January 2017). "Laboratories by type of facility" (PDF). https://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/downloads/factype.pdf. Retrieved 31 May 2017. 
  45. "U.S. and World Population Clock". United States Census Bureau. U.S. Department of Commerce. https://www.census.gov/popclock/. Retrieved 31 May 2017. "Used population value from January 1, 2017" 
  46. 46.0 46.1 46.2 "Definition of Central Laboratory". First Clinical Research. First Clinical Research, LLC. 19 April 2004. https://firstclinical.com/fda-gcp/?show=2004/Definition+of+Central+Laboratory. Retrieved 01 June 2017. 
  47. "Archeology Laboratory". Augustana University. http://www.augie.edu/archeology-laboratory. Retrieved 01 June 2017. 
  48. "Archeology Laboratory". Saint Louis University. http://www.slu.edu/department-of-sociology-and-anthropology/research-labs-and-facilities/archaeology-laboratory. Retrieved 01 June 2017. 
  49. "History - Bell Labs". Nokia Group. https://www.bell-labs.com/explore/history-bell-labs/. Retrieved 01 June 2017. 
  50. "UNH-IOL FAQ". University of New Hampshire InterOperability Laboratory. https://www.iol.unh.edu/about/faq. Retrieved 01 June 2017. 
  51. Karelin, A.; Belotserkovskiy, M.; Khokhlova, V.; Kumar, A. (6 May 2013). "Selecting a Central Laboratory". Contract Pharma. Rodman Media, Inc. http://www.contractpharma.com/issues/2013-05/view_features/selecting-a-central-laboratory/. Retrieved 01 June 2017. 
  52. 52.0 52.1 52.2 52.3 52.4 Browne, C.. "The Job Description of a Cosmetic Chemist". Chron. Hearst Newspapers, LLC. http://work.chron.com/job-description-cosmetic-chemist-17987.html. Retrieved 01 June 2017. 
  53. 53.0 53.1 "CEL". North-West University. http://health-sciences.nwu.ac.za/pharmaceutical-and-biomedical-services/cel. Retrieved 01 June 2017. 
  54. "Small Businesses & Homemade Cosmetics: Fact Sheet". Food and Drug Administration. 5 October 2016. https://www.fda.gov/cosmetics/resourcesforyou/industry/ucm388736.htm. Retrieved 01 June 2017.